Импульсная зарядка для литий-ионных аккумуляторов (без микропроцессора)
Всем нам уже все уши прожужжали, что литий-ионные аккумуляторы правильнее всего заряжать постоянным током до напряжения 4.2 В. По достижении данного значения считается, что аккумулятор набрал где-то 70-80% своей максимальной емкости. К слову сказать, этот момент наступает достаточно быстро и чем больше был ток заряда, тем быстрее.
Теперь остается зафиксировать на аккумуляторе это напряжение и подержать его так еще какое-то время. За это время аккумулятор должен набрать еще процентов 20 емкости. Ток заряда при этом будет неуклонно снижаться но, что немаловажно, до нуля так никогда и не дойдет. Окончанием заряда можно считать снижение тока до ~0.05 от номинальной емкости (той, которая указана на этикетке).
Это так называемый двухэтапный режим заряда CC/CV, о котором более подробно мы рассказывали в этой статье.Описанная логика по своей сути очень правильная и в первом приближении не имеет недостатков: быстрый набор основной емкости, четко заданные критерии перехода к фазе снижения тока и момента окончания зарядки. Но так ли это?
На самом деле, для описанной выше логике работы зарядных устройств порог в 4.2 вольта выбран далеко не случайно. Дело в том, что длительное прикладывание повышенного напряжение к li-ion аккумуляторам ведет к деградации их электродов и электродных масс (электролита) и, как следствие, потери емкости. А так как фаза заряда с фиксированным напряжением и падающим током обычно довольно длительная, то желательно ограничить напряжение сверху на уровне 4.2 (или 4.24В). Что и делается на практике.
Однако, более правильным было бы контролировать напряжение на аккумуляторе не тогда, когда через него протекает большой зарядный ток, а во время холостого хода. Дело в том, что в зависимости от величины внутреннего сопротивления батареи и тока, напряжение на аккумуляторе может запросто достигать 4.3 и даже 4.4 Вольта (если, конечно, нет PCB-модуля, который отрубит акб из-за перенапряжения). Таким образом, зарядное устройство перейдет в режим стабилизации напряжения немного раньше, чем хотелось бы, увеличивая тем самым общее время заряда.
Заряд импульсами тока с паузами между ними
Умная зарядка дейстовала бы следующим образом: сначала отключила бы зарядный ток, выждала бы небольшую паузу, измерила бы напряжение холостого хода на аккумуляторе и на основании этого приняла бы решение о своих дальнейших действиях. Чем ближе напряжение приблизилось к 4.15В (это напряжение полностью заряженного аккумулятора), тем более короткий импульс зарядного тока выдает зарядка. Как только напряжение достигнет заданного порога (4.15 вольта), импульсы тока совсем прекратятся.
Вот как это выглядит на графике:
В таком зарядном устройстве можно оставлять аккумулятор на сколь угодно длительное время, и он будет подзаряжаться по мере необходимости.
Мы только что описали еще один (более правильный) способ зарядки литиевых аккумуляторов — импульсный. Но такие зарядки менее распространены, так как для реализации этого алгоритма требуется микропроцессорное управление, что усложняет и удорожает схему.
Схема зарядника
Но не надо грустить! Оказывается, существует схема импульсного зарядного устройства для литий-ионных аккумуляторов БЕЗ МИКРОПРОЦЕССОРА. Вот она:
Как это ни удивительно эта несложная схема в полной мере реализует весь описанный выше алгоритм заряда при полном отсутствии «мозгов». Схема работает следующим образом.
С момент включения схема начинает заряжать аккумулятор постоянным током. Величина тока зависит от напряжения питания и сопротивления резистора RD.
В момент, когда напряжение на элементе при наличие зарядного тока начинает превышать 4,15 Вольта, компаратор (KA393 или KIA70XX) видит это и закрывает транзистор VT1. Далее следует пауза, за время которой напряжение на элементе снижается до своего истинного значения. Т.к. напряжение холостого хода на аккумуляторе ещё не достигло величины 4,15 В, оно вскоре упадет ниже этого значения. Компаратор, увидив это, вновь откроет зарядный ключ.
Процесс будет повторяться снова и снова, с той лишь разницей, что по мере зарядки аккумулятора импульсы зарядного тока будут всё время сокращаться, а длительность паузы между импульсами, наоборот, увеличиваться. То есть будет увеличиваться скважность импульсов.
Ближе к концу зарядки длительность импульса зарядного тока составляет доли процента от длительности паузы между ними, а напряжение на элементе будет практически равно 4,15 Вольта (конкретное значение выставляется потенциометром R1 при настройке схемы).
Теперь о деталях. Разумеется, можно использовать обычный трансформатор без средней точки. Прекрасно можно обойтись и однополупериодным выпрямителем. А еще проще взять в качестве питания какой-нибудь уже готовый 5-вольтовый зарядник от сотового телефона. Чтобы его не спалить возможно придется еще сильнее ограничить ток заряда, увеличив RD, например, до 0.47 Ом.
Транзисторы что-то типа KTA1273. Силовой полевик указан на схеме, но еще лучше взять PHB108NQ03LT (выпаять из старой материнской платы от компа).
Подстроечник 470 Ом. И не самых маленьких размеров, т.к. он все-таки должен рассеивать какую-то мощность. Брать более 470 ом не советую, т.к. это увеличивает гистерезис срабатывания микросхемы KIA (микросхема может просто вырубить зарядку вместо того, чтобы генерировать импульсы, как задумано).
Схемы можно объединять в последовательные цепочки. Это позволяет заряжать батареи из последовательно соединенных аккумуляторов.
Внимание! В случае одновременного заряда нескольких элементов соединенных последовательно, для каждого аккумулятора должна использоваться своя схема со своим собственным трансформатором питания. Или со своей собственной вторичной обмоткой трансформатора. В любом случае каждый канал должен иметь собственный источник питания, не имеющий гальванической связи с другими источниками. В противном случае некоторые из аккумуляторов окажутся замкнутыми накоротко и произойдет небольшой ба-ба-бах!
Схему можно значительно упростить, выкинув необязательные цепи, а также заменив полевик на обычный биполярный транзистор. Вот, например, парочка вполне рабочих вариантов:
Транзистор можно заменить на наш дубовый КТ837. Питания лучше не делать больше 6 вольт, т.к. чем оно выше, тем сильнее все будет греться. Резистором R1 при сильно разряженном аккумуляторе нужно ограничить ток на уровне 700-800 мА, этого будет вполне достаточно для одного элемента li-ion. При подборе резистора главное не превысить максимальную мощность силового транзистора и способности источника питания.
Если не получилось найти микросхемы KIA70хх, их можно заменить другими детекторами напряжения, например, BD4730. Вот вариант зарядки с этой микросхемой:
Для того, чтобы настроить схему, необходимо отловить момент, когда напряжение на аккумуляторе станет ровно 4.2В и в этот момент выставить на 5-ом выводе микросхемы напряжение 2.99 Вольта (при помощи резистора R6). Если есть регулируемый блок питания, можно выставить на нем ровно 4.2 Вольта и на время настройки подключить его вместо аккумулятора.
Любая из этих схем позволяет заряжать литиевые аккумуляторы любых типоразмеров и емкостей (с учетом коррекции зарядного тока) — от небольших элементов в призматических корпусах до циллиндрических 18650 или гигантских 42120.
схемы импульсных сетевых адаптеров для зарядки телефонов
Схемы импульсных сетевых адаптеров для зарядки телефонов
Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.
В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.
Рис. 1
Простая импульсная схема блокинг-генератора
Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).
Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.
Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает… То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.
В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).
Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15…25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Рис. 2
Электрическая схема более сложного
преобразователя
Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.
Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.
Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!
Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250…350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.
Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10…20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.
Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.
Сетевые адаптеры схемы
Зарядные устройства импульсные своими руками: схемы, инструкция, отзывы
Порой аккумулятор в автомобиле разряжается очень быстро. В итоге приходится использовать различные приборы для того, чтобы завести машину. На сегодняшний день большой популярностью пользуются именно импульсные зарядные устройства. Основными их производителями принято считать компании «Сонар» и «Бош».
Однако некоторые люди не могут себе позволить купить указанные приборы, поскольку они дорого стоят. В такой ситуации можно попробовать самостоятельно собрать модель. Для того чтобы разобраться в импульсных зарядках, необходимо взглянуть на стандартную схему устройства.
Схема обычной зарядной модели
Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя трансформатор с магнитопроводом, а также транзисторы. Для настройки напряжения используются регуляторы, которые подсоединены к модуляторам. Также схема импульсного зарядного устройства включает в себя специальные триггеры. Основной их задачей является повышение стабильности напряжения. Для подключения прибора на зарядке имеются зажимы. Непосредственно само электричество подается через кабель.
Устройство на 6 В: схема и инструкция
Сделать на 6 В импульсное зарядное устройство своими руками довольно просто. С этой целью для трансформатора сооружается небольшая платформа. Также необходимо заранее заготовить изоляторы. Непосредственно трансформатор часто применяют силового типа. Проводимость тока у него в среднем равняется 6 мк. Еще важно отметить, что система способна справляться с повышенным отрицательным сопротивлением. Осцилляторы используются импульсного типа.
Для нормальной работы прибора также потребуется линейный тетрод. Подбирать его следует с обкладкой. Некоторые эксперты настоятельно советуют использовать фильтры. Таким образом, можно стабилизировать напряжение, когда перегрузки в сети превышают отметку в 20 В. По эксплуатации инструкция импульсного зарядного устройства очень простая. Для подключения устройства потребуются зажимы. При этом вилку следует воткнуть в розетку.
Как сделать зарядное на 10 В?
Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя понижающие трансформаторы. Начинать сборку модели следует с поиска качественного трансформатора. В данном случае потребуется мощный магнитопровод. Еще в схемы импульсных зарядных устройств для аккумуляторов входят изоляторы. Многие эксперты устанавливают регуляторы с модуляторами. Таким образом, показатель входного напряжения можно уменьшать или увеличивать. В данном случае многое зависит от мощности автомобильного аккумулятора.
Непосредственно тетроды применяются только с обкладками. Резисторы используются расширительного типа. У некоторых модификаций встречаются триггеры. Данные элементы позволяют справляться с коротковолновыми помехами, которые возникают в сети с переменным током при резком повышении уровня тактовой частоты.
Отзывы о моделях на 12 В
Импульсные зарядные устройства для аккумуляторов на 12 В в наше время пользуются большим спросом. Если верить отзывам экспертов, то для сборки модели используются понижающие трансформаторы. Осциллятор в данном случае потребуется с высокой проводимостью тока. Также важно отметить, что для моделей подходят только подстроечные триггеры.
Тетроды, в свою очередь, используются линейного типа. Параметр допустимой перегрузки в устройствах не превышает 15 Вт. Показатель номинального ток составляет в среднем 4 А. Магнитопроводы у моделей устанавливаются за трансформаторами. Специально для них необходимо подобрать качественные изоляторы. Для подключения зарядного прибора понадобятся зажимы. Если верить экспертам, то следует учесть, что самостоятельно их изготовить будет достаточно сложно.
Однофазные модификации
Сделать однофазное импульсное зарядное устройство своими руками можно на базе понижающего трансформатора. Для их сборки также используются регуляторы. Модуляторы в данном случае подойдут только коммутируемого типа. Непосредственно триггеры устанавливаются с изоляторами. Некоторые эксперты рекомендуют также использовать резиновые подкладки.
Тетроды подбираются с высокой пропускной способностью. Регуляторы устанавливаются над модулятором. Резисторов в данном случае потребуется три. Номинальное напряжение они обязаны выдерживать на отметке в 10 В. Для подключения приора понадобятся металлические фиксаторы.
Двухфазные устройства
Двухфазное автоматическое импульсное зарядное устройство собирается довольно просто. Однако в этой ситуации не обойтись без силового трансформатора. Также для сборки используются только расширительные резисторы. Показатель входного напряжения в сети, как правило, не превышает 12 В. Тиристоры для моделей используются с изоляторами. Непосредственно модулятор устанавливается на подкладку. Регулятор в данном случае подойдет поворотного типа. Для преодоления помех применяются магнитопроводы. Подключаются устройства данного типа через провод. От сети 220 В они работать тоже могут. Для подсоединения к аккумуляторам необходимы зажимы.
Отзывы о трехфазной модификации
Трехфазное импульсное зарядное устройство отзывы от экспертов имеет хорошие. Преимущество моделей заключается в том, что они способны выдерживать больше перегрузки. Магнитопроводы в данном случае устанавливаются с проводимостью на уровне 6 мк. Для стабилизации выходного напряжения применяются линейные резисторы. В некоторых случаях устанавливаются и кодовые аналоги. Однако срок службы у них не большой.
Также важно отметить, что предельное напряжение в устройствах следует регулировать при помощи модуляторов. Устанавливаются они сразу за трансформаторами. Для преодоления магнитных помех применяются подстроечные триггеры. Многие эксперты для сборки зарядных устройств рекомендуют устанавливать фильтры. Указанные элементы помогут значительно уменьшить параметр отрицательного сопротивления в цепи.
Применение импульсного трансформатора РР20
Автомобильные зарядные устройства (импульсные) с данными трансформаторами встречаются часто. В первую очередь следует отметить, что показатель номинального напряжения у них не превышает 10 В. Параметр рабочего тока равняется в среднем 3 А. Осцилляторы для сборки устройства часто используются с не большой проводимостью.
Магнитопроводы в данном случае устанавливаются на подкладках. Расширительные резисторы используются часто. Для регулировки номинального напряжения стандартно применяют модуляторы. У некоторых модификаций используются триггерные блоки. Для нормальной работы системы также не обойтись без линейных тетродов. Зажимы для прибора целесообразнее покупать отдельно. Сделать их самостоятельно очень сложно.
Использование трансформаторов РР22
Зарядные устройства (импульсные) с этими трансформаторами являются довольно распространенными. Для того чтобы самостоятельно собрать модификацию, потребуется найти качественный осциллятор. Также трансформатор будет работать только с магнитопроводом на 3 мк. В данном случае больше всего подходят резисторы расширительного типа. Однако в первую очередь важно заняться установкой регулятора. С этой целью нужно использовать коммутируемый модулятор, который устанавливается на подкладке.
Далее важно заняться полупроводниковым транзистором. Для того чтобы избежать коротких замыканий, многие эксперты рекомендуют использовать стабилизаторы. На рынке представлено множество однополюсных модификаций. В данном случае номинальное напряжение будет находиться в районе 5 В. Показатель рабочего тока составляет примерно 4 А.
Зарядное оборудование с трансформатором РР30
Для того чтобы собрать зарядные устройства (импульсные) с указанными трансформаторами, потребуется мощный магнитопровод. При этом осциллятор целесообразнее применять на 2 мк. Параметр отрицательного сопротивления в цепи обязан быть выше 3 Ом. Устанавливается магнитопровод рядом с трансформатором. Для подсоединения модулятора потребуется два контакта. Также важно отметить, что регуляторы целесообразнее использовать поворотного типа.
Многие эксперты рекомендуют резисторы устанавливать на обкладке. Все это позволит значительно сократить случаи коротких замыканий. Для стабилизации напряжения стандартно применяются фильтры. Триггерные блоки с данными трансфокаторами чаще всего используются подстроечного типа. Однако в наше время их найти сложно. Чаще всего попадаются именно оперативные аналоги. Номинальное напряжение в цепи они способны выдерживать в 15 В.
Применение разделительных трансформаторов
Разделительные трансформаторы очень редко встречаются. Основная их проблема кроется в малой проводимости тока. Также важно отметить, что они способны работать только на кодовых резисторах, которые дорого стоят в магазине. Однако преимущества у моделей есть. В первую очередь это касается повышенного номинального напряжения в цепи. Таким образом, зарядка автомобильного аккумулятора много времени не отнимет.
Также нужно отметить, что эти трансформаторы являются компактными, и в машине не займут много места. Тиристоры в данном случае применяются лишь волнового типа. Устанавливаются они чаще всего на обкладках. Для припайки модулятора применяется изолятор. Транзисторы многие эксперты настоятельно рекомендуют использовать полупроводникового типа. В магазине они представлены с различной проводимостью. В итоге параметр отрицательного сопротивления в цепи не должен превышать 8 Ом. Для подсоединения прибора к автомобильным аккумуляторам используются зажимы.
Модель с трансформатором КУ2
Трансформаторы данной серии имеют большие габариты и способны работать лишь с магнитопроводами на 4 мк. Все это говорит о том, что для нормальной эксплуатации прибора потребуются триггеры. При помощи данных устройств получится стабилизировать выходное напряжение. Также возле трансформаторов потребуется установить два фильтра. Некоторые эксперты настоятельно рекомендуют использовать стабилитроны. Однако данные устройства способны работать только при не больших перегрузках в сети.
Резисторы в данном случае можно смело применять расширительного типа. Для регулировки выходного напряжения используются коммутируемые модуляторы. Непосредственно регуляторы устанавливать следует через дроссель. Если верить отзывам экспертов, то трансформатор для безопасного использования следует располагать на подкладке. В данном случае потребуются два изолятора. Транзистора чаще всего применяются полупроводникового типа.
Зарядное оборудование с трансформатором КУ5
Зарядные устройства (импульсные) с указанными трансформаторами не пользуются большим спросом. В первую очередь это вызвано низким выходным напряжением. Таким образом, зарядка автомобильного аккумулятора занимает много времени. Однако если использовать мощный осциллятор, то ситуацию можно немного поправить. Также многие эксперты рекомендуют устанавливать расширительные резисторы.
В данном случае модулятор подойдет только коммутируемого типа. У некоторых моделей встречаются однополюсные стабилитроны. Однако в этой ситуации трансформатор может не выдержать чрезмерной нагрузки. Триггер часто применятся подстроечного типа. Для борьбы с коротковолновыми помехами не обойтись без фильтров. Чтобы подсоединить устройство к автомобильному аккумулятору используют зажимы.
Модель со сдвоенным дросселем
Зарядные устройства (импульсные) с двоенными дросселями позволяют использовать более двух модуляторов. Таким образом, можно устанавливать цифровые регуляторы напряжения. В данном случае трансформаторы чаще всего подбираются понижающего типа. Непосредственно осцилляторы используют на 3 мк. Резисторы многие эксперты рекомендуют устанавливать расширительного типа. В свою очередь кодовые аналоги не смогут долго прослужить. Тиристорные блоки применяются как волнового, так и оперативного типа.
Подведение итогов
Учитывая все вышесказанное, следует отметить, что наиболее востребованными считают трехфазные модификации. Для того чтобы их собрать, необходимо уметь пользоваться паяльной лампой. Детали для устройства нужно приобретать в специализированных магазинах. Также следует помнить о технике безопасности при подключении прибора к сети.
Импульсное зарядное устройство для автомобиля своими руками
Сегодняшняя наша статья посвящена теме самодельная импульсная зарядка для АКБ автомобиля. Большинство автовладельцев пользуются в своей практике зарядными устройствами для аккумулятора автомобиля. Но иногда в силу разных причин возникает необходимость собрать такое зарядное устройство для аккумулятора автомобиля своими руками, причины разные
- Нет финансовой возможности купить
- Далеко расположен населённый пункт от места продажи таких устройств
- Требуется необычное зарядное устройство с функциями которых нет в магазинных зарядках, либо есть, но по очень дорогой цене
В общем, причины могут быть разные. А вот как сделать такое устройство для зарядки аккумуляторной батареи мы и поговорим ниже.
Скажем сразу, что собрать самодельное именно импульсное зарядное устройство без базовых знаний схемотехнике не получится, так как попросту будет не понятно, о чем идет речь. Но, тем не менее, мы опишем все же такую схему сборки, которая будет изобиловать техническими терминами.
Что такое зарядное устройство – электронный прибор предназначенный для заряда различных электрических аккумуляторов и аккумуляторных батарей от энергии подающейся из внешнего источника, как правило от розетки или сети переменного тока, зачастую переменный ток преобразовывается в таком приборе в постоянный с необходимым выходным значением в Вольтах, Амперах и общей Мощности зарядного тока.
Итак, чтобы собрать импульсное пуско зарядное устройство для автомобиля своими руками на хендай санта фе или другой автомобиль, точнее просто зарядное в нашем случае, проще всего будет не собирать его с ноля, а приобрести уже готовый импульсный трансформатор Ватт на 100-150, благо их сейчас продаётся предостаточно и на выходе они уже имеют 10-12 вольт. Нам, по сути, останется добавить регулировку заряда и защиты от коротких замыканий, но мы пойдем ещё более простым и дешёвым путем сделаем импульсную зарядку для аккумулятора из лампы экономки.
По сути, переделка такой лампы в импульсный блок питания или зарядку для аккумулятора состоит только в добавлении узла диодного моста и сглаживающего конденсатора.
Зарядное устройство для аккумулятора автомобиля своими руками
Вот собственно и вся переделка, если использовать такое устройство для зарядки АКБ, то лучше выпрямительные диоды поставить серии КД 213, а все транзисторы посадить на радиаторы, так как может быть довольно сильный их нагрев.
Как можно видеть простому обывателю импульсное зарядное устройство для машины собрать своими руками будет практически нереально, так как в процессе придется все нравно что-то дорабатывать, например, ограничивать силу тока и напряжения и тд. Так что если вы не обладаете соответствующими знаниями и практикой в этой области, то проще будет либо заказать такую импульсную зарядку для аккумулятора у знающих людей, либо приобрести магазинный вариант.
Потому как эксперименты со своим рабочим аккумулятором могут привести к его полному выходу их строя. А стоит он совсем не дешево. Ну а так как скорее всего из вышеописанного вы ничегошеньки не поняли то лучше посмотрите видео как это делается в реальности на практике
Зарядное устройство для автомобильного аккумулятора своими руками
Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.
Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.
Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).
Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.
Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.
Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.
Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.
Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.
Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.
После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.
На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.
На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.
После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.
Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:
Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.
Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.
Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.
При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.
Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.
Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.
Печатная плата была разведена на скорую руку, но получилось довольно неплохо.
Теперь остается соединить все по картинке и приступить к монтажу.
Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.
Амперметр можно взять советский аналоговый или цифровой.
Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.
Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.
Автор: АКА КАСЬЯН.
Прикрепленные файлы: СКАЧАТЬ.
Практические схемы универсальных зарядных устройств для аккумуляторов
Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.
Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ — недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.
К этому моменту у меня уже была линейка отработанных схем, осталось лишь воплотить схему в готовое устройство, и попутно поделиться своими решениями. Вдруг камрадам пригодится!
Содержание / Contents
Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).
Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.
ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.
На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.
Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.
При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.
При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.
При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона Vh2 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.
По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).
Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.
Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.
Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.
Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.
Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.
В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.
Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.
Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.
Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.
Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.
Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.
Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.
При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.
Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.
В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).
Схема 3а — как вариант схемы 3.
ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.
Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.
На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.
На схеме 6 — вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно «+» питания.
В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.
ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка — заряд» — для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» — для сброса ЗУ в режим заряда.
3. «Ток — буфер» — для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.
Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».
Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.
Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить. В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.
Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались китайские вольтметры (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).
В этом корпусе дополнительно смонтированы зажимы для подключения источника переменного тока (трансформатора). Соответственно, внутри дополнительно смонтирован диодный мост с конденсаторным сглаживающим фильтром.
Спасибо за внимание!
Камрад, рассмотри датагорские рекомендации
Константин (riswel)
Россия, г. Калининград
C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.
Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.
Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.
Схема импульсного зарядного устройства — RadioRadar
Импульсную зарядку сделать самому
ИБП должен обладать такими качествами, как выдача тока до 10А, при стабильном заданном напряжении. При этом желательно, чтобы никакие компоненты не грелись сильно, а использование зарядного устройства было безопасно. Они, как правило, используются для зарядки автомобильных аккумуляторов. Правильная зарядка таких аккумуляторов увеличивает срок их эксплуатации на 25%.
Импульсное зарядное устройство возможно приобрести или сделать самостоятельно, купив указанные радио-компоненты. Также можно обратиться за помощью к специалистам, которые паяют платы на заказ. В любом случае, варианты решения есть.
Детали можно взять уже бывшие в употреблении, лишь бы были рабочие. Значительная их часть находится в компьютерных блоках питания. Трансформатор был взят из блока питания ПК и рассчитан на 24В выходного напряжения. Без изменения его обмоток, повышения выходного напряжения можно добиться, меняя частоту генератора.
На входе питания дроссель, состоящий из двух непересекающихся обмоток, на кольце от БП. Обе обмотки одинаковые, намотанные проводом диаметром 1мм, по 9 витков каждая.
Схема импульсного зарядного устройства, которая полностью удовлетворяет все требования по заряду автомобильного АКБ, представлена ниже.
Стоит отметить, что можно достигнуть мощности 400Вт увеличив емкость электролитических конденсаторов.
Дополняют её такие составляющие, как: ШИМ регулятор и защита от короткого замыкания.
Защита от короткого замыкания регулируется переменным резистором, тем самым выставляется необходимый ток КЗ.
Все точки подключения указаны. Номиналы элементов указаны на схеме.
Отлично подойдет не только для зарядки АКБ, но и для прочих нужд, ввиду того, что имеется регулировка выходного напряжения. Корпус можно взять от чего угодно, либо сделать самостоятельно.
Минус этого устройства – его габариты. Покупное зарядное устройство будет несколько меньше в объеме.
Автор: RadioRadar
Импульсное зарядное устройстводля восстановления утомленных свинцово-кислотных аккумуляторов, схема и инструкция
ВНИМАНИЕ: Прежде чем приступить к подобному проекту, помните: напряжение в сети опасно, поэтому, если вы не уверены на 100% в том, что делаете, проконсультируйтесь с другом, у которого есть соответствующие навыки, или не делайте этого вообще!
Принципиальная схема
Если у вас есть мотоцикл, дом на колесах, фургон, газонокосилка, круиз на день или, может быть, старинный автомобиль, вам, должно быть, в какой-то момент пришлось списать свинцово-кислотный аккумулятор.Когда аккумулятор неправильно заряжен или саморазрядился, как это происходит во время простоя, кристаллы сульфата накапливаются на пластинах аккумулятора. Сульфат препятствует полной зарядке аккумулятора, и поэтому он не может обеспечить полную емкость. При попытке зарядить аккумулятор в этом состоянии он только нагревается и теряет воду, сила тяжести электролита не увеличивается до нормального состояния «полного заряда». Единственное, что вы делаете — полностью убиваете батарею. Если аккумулятор имеет напряжение покоя не менее 1.8 В / элемент и никакие элементы не закорочены, можно выполнить десульфатацию пластин. Эта схема является дополнением и частью модификации обычного зарядного устройства и решает проблему сульфата.
Проект: возьмите старое зарядное устройство, большое или маленькое, на ваш выбор, в зависимости от размера батарей, с которыми вы обычно работаете (чем больше, тем лучше). Есть несколько уловок для повышения производительности, если вам это нужно. Начните с того, что вырвите все, кроме трансформатора и выпрямителя. Некоторые старые зарядные устройства оснащены ребристыми выпрямителями, которые имеют высокое падение напряжения и требуют замены.Замените его на прочный мостовой выпрямитель, способный выдерживать большие токи. Вся проводка на вторичной обмотке должна быть короткой и толстой. Выпрямитель должен быть прикручен к шасси болтами, чтобы он не охлаждался. Если в зарядном устройстве есть переключатель высокого / низкого уровня, это является плюсом, в противном случае вы можете в некоторых случаях добавить несколько витков провода на вторичную обмотку. Схема; 14-ступенчатый счетчик пульсаций и генератор IC 4060 вырабатывают импульс, который является тактовым импульсом схемы. Импульс подается на таймер 555, который определяет длину активного выхода.С помощью переключателя вы можете выбрать длинный или короткий импульсный выход. Выход таймера 555 запускает через транзистор драйвер симистора оптоизолятора с переходом через нуль MOC 3041. Это обеспечивает плавный пуск трансформатора зарядного устройства через симистор и демпферную цепь. Для схемы необходим небольшой блок питания, который состоит из Т1 трансформатора 15В 0,1А вторичной обмотки, мостового выпрямителя, регулятора и двух крышек. Поскольку в этот проект входит зарядное устройство (X), результат может отличаться по производительности от одного случая к другому.Однако это не значит, что ваш проект не работает, но эффективность может варьироваться. Некоторые отмечают, что демпфирующий колпачок относится к высоковольтному типу переменного тока (X), а резисторы на стороне сети имеют тип не менее 0,5 Вт. Используйте симистор, который может принимать 400 В + и 10 А +, я использую BTA 25.600, но в большинстве случаев это перебор. Нет печатной платы, извините!
Как это работает:
Ну краткая версия. Цель состоит в том, чтобы получить достаточно высокое напряжение ячейки, чтобы сульфат растворился без кипячения или плавления батареи. Это достигается за счет применения более высокого напряжения на более короткие периоды времени и за счет того, что батарея некоторое время отдыхает.Импульсы в коротком диапазоне составляют примерно 0,5 с вкл. / 3 с выкл., А длинные импульсы — 1,4 с вкл. / 2 с выкл. Это время может варьироваться в зависимости от допусков компонентов. Начните с длинного импульса и, если вы обнаружите «закипание» (больше, чем при нормальной зарядке) в электролите, переключитесь на короткие импульсы. Не оставляйте процесс без присмотра, по крайней мере, до тех пор, пока вы не узнаете, как выглядит ваша конкретная версия этого проекта. Я построил первую версию этой схемы около 10 лет назад и экспериментировал с ней, но я уверен, что кто-то сможет улучшить ее.
.Схема зарядного устройства для беспроводного мобильного телефона| Проекты самодельных схем
Зарядное устройство для беспроводного мобильного телефона — это устройство, которое заряжает совместимый мобильный телефон или мобильный телефон, расположенный рядом с ним, посредством высокочастотной беспроводной передачи тока без какого-либо физического контакта.
В этом посте мы узнаем, как создать схему зарядного устройства для беспроводного мобильного телефона, чтобы облегчить зарядку беспроводного мобильного телефона без использования обычного зарядного устройства.
The Objective
Здесь требуется, чтобы мобильный телефон был установлен с модулем схемы приемника внутри и подключен к контактам зарядного гнезда для реализации процесса беспроводной зарядки.Как только это будет сделано, сотовый телефон просто нужно держать над беспроводным зарядным устройством для инициирования предлагаемой беспроводной зарядки.
В одном из наших предыдущих постов мы изучили аналогичную концепцию, которая объясняла зарядку литий-ионной батареи в беспроводном режиме. Здесь мы также используем похожую технику, но пытаемся реализовать то же самое, не извлекая батарею из мобильного телефона.
Кроме того, в предыдущем посте мы всесторонне изучили основы беспроводной зарядки, воспользуемся приведенными там инструкциями и попытаемся разработать предлагаемую схему зарядного устройства для беспроводного мобильного телефона.
Мы начнем со схемы передатчика энергии, которая является базовым блоком и должна быть подключена к источнику питания и для передачи энергии модулю сотового телефона.
Характеристики катушки передатчика (Tx):
Схема передатчика для этого зарядного устройства для беспроводного мобильного телефона является решающим этапом и должна быть построена точно, и она должна быть структурирована в соответствии с популярной схемой расположения катушек-блинчиков Tesla, как показано ниже:
ДИАМЕТР КАТУШКИ ВОКРУГ 18 CMSИзготовление печатной платы вышеупомянутой катушки Блинчика.
Вдохновленный вышеупомянутой теорией, меньшая компоновка той же катушки может быть выгравирована на печатной плате, как показано на следующей схеме, и подключена, как показано:
Размеры: 10 дюймов на 10 дюймов, больший размер может обеспечить более быструю зарядку и улучшенный выходной ток
На рисунке выше показана конструкция эмиттера мощности или радиатора, также вспомните принципиальную схему из нашего предыдущего поста, в приведенной выше конструкции используется точно такая же схема, хотя здесь мы делаем это через печатную плату путем травления обмотки макет над ним.
Тщательное наблюдение показывает, что в приведенной выше схеме есть пара параллельных спиральных медных дорожек, идущих по спирали и образующих две половины катушки передатчика, при этом центральный отвод достигается с помощью соединенной красной перемычки на концах катушки.
Компоновка позволяет сделать конструкцию компактной и эффективной для требуемых операций.
Схема расположения гусениц может быть в форме квадрата или овала с одной стороны и квадратной с другой, чтобы сделать устройство еще более гладким.
Остальная часть довольно проста и соответствует нашей предыдущей схеме, где транзистор 2N2222 включен для создания требуемых высокочастотных колебаний и распространения.
Схема работает от источника 12 В / 1,5 А, а количество витков (катушек) может быть выбрано приблизительно в соответствии со значением напряжения питания, то есть примерно от 15 до 20 витков на каждую половину катушки передатчика. Более высокие витки приведут к меньшему току и повышенному напряжению излучения и наоборот.
При включении можно ожидать, что схема будет генерировать сильный магнитный поток вокруг спиральной дорожки, эквивалентный входной мощности.
Теперь излучаемая мощность должна быть поглощена с помощью идентичной схемы для выполнения беспроводной передачи энергии и предполагаемой зарядки сотового телефона.
Для этого нам понадобится схема коллектора или приемника для сбора излучаемой мощности, это может быть разработано, как описано в следующем разделе:
Размеры: 3 дюйма на 3 дюйма или в соответствии с местом для размещения внутри вашего мобильного телефона
Как можно увидеть в приведенной выше конструкции приемника, можно увидеть идентичную компоновку катушки, за исключением того, что здесь две концентрические спирали подключены параллельно для добавления тока, в отличие от компоновки передатчика, которая включала последовательное соединение из-за ограничения центрального отвода. для дизайна.
Конструкция должна быть достаточно маленькой, чтобы поместиться внутри стандартного мобильного телефона, чуть ниже задней крышки, а выход, который заканчивается через диод, может быть подключен либо к батарее напрямую, либо через контакты зарядного разъема (внутри).
После того, как вышеуказанные схемы построены, схему передатчика можно соединить с указанным входом постоянного тока, а модуль приемника разместить прямо над платой передатчика в центре.
Светодиод с резистором 1 кОм может быть включен на выходе схемы приемника, чтобы получить мгновенную индикацию процесса беспроводной передачи энергии.
После подтверждения операции выход приемника можно подключить к разъему сотового телефона для проверки реакции эффекта беспроводной зарядки.
Однако перед этим вы можете захотеть подтвердить вывод на мобильный телефон от модуля беспроводного приемника … он должен быть от 5 до 6 В, если больше, черный провод можно просто сместить и припаять несколько катушек вверх. пока не будет достигнуто нужное напряжение.
После завершения всех подтверждений модуль можно разместить внутри мобильного телефона, и соединения будут выполнены надлежащим образом.
Наконец, мы надеемся, что если все будет сделано правильно, сборка может позволить вам держать мобильный телефон прямо над настроенным передатчиком и обеспечить успешную зарядку беспроводного мобильного телефона.
Создание практического прототипа
Вышеупомянутая концепция беспроводной передачи энергии была успешно опробована и протестирована с некоторыми модификациями г-ном Нароттамом Гуптой, который является ярым последователем этого блога.
Модифицированная схема зарядного устройства для беспроводного сотового телефона и изображения прототипа можно увидеть ниже:
Схема зарядного устройства для беспроводного сотового телефонаО компании Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!
для зарядки последовательно соединенных липоэлементов
В статье обсуждается относительно простая схема зарядного устройства для балансировки аккумуляторов Lipo, которая предназначена для непрерывного сканирования и зарядки подключенных элементов аккумулятора.
Идею предложили г-н Шиндлер и г-н Эмиль Ян Томас Батикулон.
Зарядка 6 аккумуляторов Li-Po
Концепции очень хорошо написаны, кратки и понятны. Огромное спасибо за глубокое освещение темы зарядки.
Сталкивались ли вы с необходимостью регулярно заряжать несколько идентичных липо-пакетов? У меня есть такая потребность, на перезарядку 6 мощных блоков питания, содержащих по 4 элемента каждые несколько дней, уходит много времени.
Я предлагаю одноэлементное зарядное устройство, которое сканирует все ячейки через балансировочные заглушки и обслуживает потребность в соответствии с потребностями в течение разделенного интервала периода сканирования.
Эскиз Arduino, регистры сдвига, дискретное соединение и план их объединения… вот где я прошу вас направить меня к жизнеспособной реализации. Если бы вы были так любезны?
Зарядка 18650 Li-Ion Pack
Добрый день,
Я недавно нашел ваш блог и после дальнейшего прочтения вашего сообщения он очень полезен с электронным фоном или без него, и я ценю вашу работу.
У меня есть проект, но я застрял в нем. Моя идея заключалась в том, как я могу зарядить 13 литий-ионных аккумуляторов 18650 последовательно с балансировочным зарядным устройством ?.Можете ли вы помочь мне с этим и добавить это к своей работе?
Спасибо,
Дизайн и работа
Как показано на следующей диаграмме, предложенная схема зарядного устройства для балансировки аккумуляторов Lipo может быть довольно легко реализована с использованием пары каскадов IC.
Попробуем разобраться, как схема предназначена для работы:
- В схеме можно увидеть два источника питания постоянного тока. Один из них — фиксированное напряжение 12 В для микросхем и каскадов драйвера реле, второй — 4.2В для зарядки липоэлементов через контакты реле. (Убедитесь, что заземление или отрицательные стороны обоих источников питания являются общими).
- Это 4,2 В также подается на неинвертирующий контакт № 3 операционного усилителя через предустановку.
- Ссылаясь на схему ниже, при включении питания сигнал HIGH с одного из выходов IC 4017 случайным образом включает одно из реле через подключенный драйвер BC547.
- Контакты реле соединяют 4,2 В с соответствующей липо-ячейкой.Если элемент разряжен, это вызывает мгновенное падение 4,2 В до уровня разряда, который может быть от 3 В до 3,9 В.
- Это падение приводит к падению потенциала вывода № 3 операционного усилителя ниже его потенциала на выводе № 2.
- Из-за этого на выходе операционного усилителя падает низкий уровень, что не влияет на вывод 14 микросхемы IC 4017.
- Эта ситуация позволяет подключенному липоэлементу начать зарядку, и как только он достигнет отметка 4,2 В, согласно настройке предустановки, потенциал контакта №3 выше, чем потенциал контакта №2.
- Это мгновенно переключает выход операционного усилителя на высокий уровень, переключая вывод № 14 IC 4017 тактовым импульсом.
- Вышеупомянутое действие заставляет существующий выходной вывод HIGH от IC 4017 перейти к его следующей распиновке.
- Этот ВЫСОКИЙ уровень приводит к включению следующего соответствующего релейного каскада BC547 и подключению следующего элемента Lipo таким же образом, как описано выше.
- Цикл повторяется для всех 10 ячеек, пока все ячейки не зарядятся последовательно.
Схема цепи управления
Вторая диаграмма ниже — это ступень драйвера реле, который необходимо повторить 10 раз, и база BC557, связанная с красными точками соответствующих ступеней BC547 из первой схемы ниже.
Схема драйвера реле
Если ячейки рассчитаны на 3,7 В, предустановка операционного усилителя регулируется таким образом, что его выходной контакт № 6 становится высоким, когда уровень заряда в ячейке достигает примерно 4,2 В.
Как настроить схему балансировочного зарядного устройства
Для настройки можно подать образец 4,2 В на верхний вывод показанной предустановки, а ползунок предустановки отрегулировать так, чтобы контакт № 6 операционного усилителя был просто высоким (положительным).
- Когда все позиции подключены, как показано на схемах, и питание включено, предположим, что на начальном контакте № 3 IC4017 высокий уровень, который, в свою очередь, активирует соответствующие BC547, BC557 и подключенные контакты реле.
- Ячейка № 1 теперь начинает зарядку, которая снижает напряжение питания на предварительно установленном контакте № 3 операционного усилителя до, скажем, 3,4 В или любого другого уровня, который может быть начальным уровнем разряда ячейки № 1.
- В то время как это происходит, контакт №3 операционного усилителя имеет более низкий потенциал, чем контакт №2, обеспечивая низкий сигнал на контакте №6 и контакте №14 микросхемы 4017.
- В качестве элемента №1 липо-батареи заряжается, напряжение на клеммах этого элемента медленно увеличивается, пока не достигнет предусмотренной отметки 4,2 В.
- Как только это произойдет, контакт № 3 операционного усилителя также подвергается воздействию этого напряжения, вынуждая его выходной контакт № 6 становиться высоким, что, в свою очередь, побуждает IC4017 переключить свой логический уровень № 3 на следующий контакт № 2. , активируя каскад драйвера этого пина.
- Вышеупомянутый сдвиг активирует зарядку второго элемента липо-батареи таким же образом, как и для первого элемента.
- Теперь процесс продолжается и повторяется путем непрерывного сканирования и зарядки ячеек.
- Таким образом, липо-аккумуляторные элементы поддерживаются с оптимальным уровнем заряда с помощью описанной выше схемы зарядного устройства для липо-баланса аккумуляторов, пока цепь остается соединенной с липо-элементами.
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!
— определение — английский
Примеры предложений с «импульсным зарядным устройством», память переводов
Patents-wipoБыстрое импульсное зарядное устройство для аккумуляторовpatents-wipoВ соответствии с дозируемым индукционным двухтактным двигателем, аспирационный цилиндр (66) (или пульсирующее воздушное зарядное устройство) соединен с цилиндром сгорания (68) объемным транспортным каналом (174), имеющим расположенный в нем клапан (146). tmClassBinoculars, оптические прицелы, линзы, компасы, навигационное оборудование и инструменты, оборудование GPS, передатчики, штативы, шагомеры, импульсные Счетчики, аккумуляторы, зарядные устройства для аккумуляторовWikiMatrixНекоторые зарядные устройства используют импульсы для проверки текущего состояния аккумулятора при первом подключении зарядного устройства, затем используют зарядку постоянным током во время быстрой зарядки, а затем используют импульсную зарядку как разновидность непрерывной зарядки для поддержания заряда.WikiMatrixНекоторые зарядные устройства используют «зарядку отрицательным импульсом», также называемую «рефлекторной зарядкой» или «зарядкой отрыжкой» .patents-wipoВ другом варианте осуществления электронное устройство оснащено источником света для фотосвязи и может взаимодействовать с зарядным устройством через импульсный свет. -wipo В одном варианте осуществления зарядное устройство периодически подает импульс одному или нескольким источникам света до тех пор, пока оно не получит свет (113), отраженный от отражающего материала (107), расположенного вдоль электронного устройства. patents-wipo Разница в напряжении катушки (ΔV), создаваемая на внешнем зарядном устройстве в результате этих импульсов оценивается и используется внешним зарядным устройством для индикации связи.tmClassЗарядные устройства для аккумуляторов для использования с имплантируемыми медицинскими генераторами импульсов или имплантируемыми неврологическими стимуляторами stmClassCharging systems, состоящие в основном из зарядного устройства для аккумуляторов для использования с имплантируемыми медицинскими генераторами импульсов или имплантируемыми неврологическими стимуляторами. цепь магнитного сжатия, содержащая импульсный трансформатор для генерации электрических импульсов высокого напряжения с частотой 2000 Гц или выше.Патенты-wipoЗарядное устройство с высокой энергией и деполяризацией для зарядного устройства для свинцово-кислотных аккумуляторов повышенной надежностиtmClassЗарядные устройства для аккумуляторов в комплекте с имплантируемыми медицинскими генераторами импульсов или имплантируемыми неврологическими стимуляторами подключено к зарядным устройствам с батарейным питанием, которые излучают непрерывные электрические импульсы. patents-wipoЗарядное устройство, которое регулирует и подает зарядные импульсы (136) на батарею таким образом, чтобы регулировать один или несколько параметров батареи.WikiMatrix Такие зарядные устройства используют как положительные, так и короткие отрицательные импульсы тока. WikiMatrixПростое зарядное устройство работает путем подачи постоянного или импульсного источника питания постоянного тока на заряжаемую батарею. Patents-wipo Система может включать в себя заряжаемое устройство, включая контроллер, настроенный для генерации импульса нагрузки. Это устройство включает в себя систему импульсного питания (404), имеющую резонансное зарядное устройство, заряжающее батарею зарядных конденсаторов, и схему магнитного сжатия, содержащую импульсный трансформатор (406) для генерации электрических импульсов высокого напряжения на частота повторения 2000 Гц или выше.Патенты-wipoSaid корпус обуви снабжен электронной системой управления импульсным массажем, массажной стелькой, зарядным устройством и пультом дистанционного управления, снабженным дистанционной передающей схемой внутри. изменение скорости тока заряда аккумулятора определяется временем нарастания напряжения аккумулятора. patents-wipo Контроллер отправляет импульсный сигнал на соединительную линию через выход, чтобы контроллер мог определить, подключен ли аккумулятор к зарядному устройству с помощью наличие импульсного сигнала на входе контроллера.Patents-wipo Величина изменения напряжения на катушке, создаваемого на внешнем зарядном устройстве ΔV в результате этих импульсов, оценивается и используется схемой контроллера во внешнем зарядном устройстве как показатель связи между внешним зарядным устройством и IPG. -wipo Процесс и устройство для быстрой зарядки аккумулятора с помощью зарядного устройства, вход которого подключен к источнику питания, причем зарядное устройство обеспечивает переменные импульсы заряда и разряда для аккумулятора.Показана страница 1.Найдено 39 предложения с фразой импульсное зарядное устройство.Найдено за 9 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.
.