Масса в электричестве: Масса (электротехника) — Карта знаний

Содержание

Масса (электротехника) — Карта знаний

  • «Масса» — (то же «корпус», «минус») термин в электротехнике, электронике, применяемый в цепях постоянного тока: силовых, управления, измерения. Используется в транспорте общего и специального назначения, авиации, космических аппаратах.

    «Массой» называется провод, соединяющий минусовой вывод электрического элемента (например, электромагнита) с корпусом изделия, в котором он установлен. Положительный вывод электрического элемента может соединяться, к примеру, с источником питания, образуя замкнутый контур, по которому потечёт ток. «Массой» может быть не только провод, но и корпус самого электроэлемента. Например, анодный вывод диода 2Д203А1, на который накручивается гайка.

    Исторически сложилось так, что использовать в качестве минусового провода корпус изделия было экономически обосновано экономией материалов, в том числе дорогостоящих проводников, и с целью уменьшения массы изделия.

    Это решение было настолько простым и рациональным, удобным в использовании, что термин сохранился в практической электротехнике до настоящего времени.

Источник: Википедия

Связанные понятия

Герко́н (акроним от «герметизированный контакт») — электромеханическое коммутационное устройство, изменяющее состояние подключённой электрической цепи при воздействии магнитного поля от постоянного магнита или внешнего электромагнита, например, соленоида. Искробезопа́сная электри́ческая цепь — электрическая цепь, выполненная так, что электрический разряд не может воспламенить взрывоопасную среду с вероятностью большей 0,001 при предписанных условиях испытания. Вид взрывозащиты «искробезопасная электрическая цепь» основывается на поддержании искробезопасного тока (напряжения, мощности или энергии) в электрической цепи. Счётчик электрической энергии (электрический счётчик) — прибор для измерения расхода электроэнергии переменного или постоянного тока (обычно в кВт·ч или А·ч).
Мера электрического сопротивления — образцовые резисторы специально сконструированные и изготовленные для использования в качестве мер электрического сопротивления. Основные разновидности — катушки сопротивления и магазины сопротивлений.

Упоминания в литературе

При этом способе нагрев деформированной детали осуществляется пропусканием электрического тока большой силы и низкого напряжения. Вспомним, что точечная сварка легко нагревает докрасна металл, сжатый двумя электродами. Общий принцип действия всех промышленных аппаратов точечной сварки заключается в быстром местном нагреве металла, находящегося в контакте с угольным электродом, установленным в держателе. В зависимости от типа держателя и различной установки электродов сварка может осуществляться точками, прямыми строчками, кривыми строчками. Один провод подводит напряжение к держателю электрода, а второй соединяет лист с массой.
Входное напряжение на клеммах GIGAZONE GreenMax 450Вт может составлять от 100 до 240 В, выходное обеспечивается на уровне +12 В с силой тока 42 А. Стабильность и уровень отклонений выходного напряжения от номинала соответствуют стандартам Intel ATX 12V V2.3 и SSI EPS 12V V2.91. БП массой 2,5 кг охлаждается одним 120-мм вентилятором на жидкостных подшипниках, штатно работает при температуре 50 °C и укомплектован японскими твердотельными конденсаторами (у этой модели – в основном контуре; в более мощных – везде). Тонкие и легкие ноутбуки, демонстрирующие, что портативность может успешно сочетаться с длительным временем автономной работы. Модели данной серии выполнены в корпусе из магниевого сплава, их масса менее 1,8 кг, они оснащены 13,3-дюйм матрицей LED VAIO Display (1366×768) и процессором Intel Core2Duo сверхнизкого напряжения. Время автономной работы устройства достигает 9 ч (или 15 ч с дополнительной батареей).
www.sony.ru Показатели алюминия и его сплавов несколько хуже по проводимости, зато алюминий дешевле как по стоимости, так и в производстве, а провода имеют сравнительно меньшую массу (сравните плотность алюминия – 2,6989 г/см? и меди – 8,92 г/см?). Поэтому алюминиевые проводники используют на длинных магистралях, которые к тому же подняты на большую высоту посредством специальных опор и системы изоляторов. Развитие авиации и космической техники невозможно представить без применения синтетических клеев. Клееные сотовые и слоистые конструкции получили применение в самолетостроении и в ракетно-космических системах. К применяемым клеям предъявляют высокие требования, так как они должны обеспечить достаточную прочность при температурах от –185 до +260 °C. Самолет состоит более чем наполовину из клееных конструкций; это позволяет уменьшить его массу за счет исключения большого числа крепежных элементов.
Наилучшими для этой области техники оказались модифицированные эпоксидные и кремнийорганические клеи.

Связанные понятия (продолжение)

Микроминиатюриза́ция — направление научно-технической деятельности, основными задачами которого являются уменьшение габаритов, массы и стоимости радиоэлектронной аппаратуры при одновременном повышении ее надёжности и экономичности за счет совершенствования схемотехнических, конструкторских и технологических методов. Тенденция микроминиатюризации представляет собой непрерывный процесс, который опирается главным образом на достижения микроэлектроники, в том числе на использование интегральной технологии… Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. В электротехнике при помощи заземления добиваются защиты от опасного действия электрического тока путём снижения напряжения прикосновения до безопасного для человека и животных значения.
Также заземление применяется для использования земли в качестве проводника тока (например, в проводной электросвязи). Производится с помощью заземлителя, обеспечивающего непосредственный… Устройство защиты при дуговом пробое (УЗДП), в документации производителей также устройство защиты от искрения (УЗИс), AFCI, AFDD — электронное устройство, предназначенное для снижения эффектов дугового пробоя путём разъединения цепи при обнаружении дугового пробоя. Основная сфера применения УЗДП — бытовые низковольтные сети, основная задача УЗДП — предотвращение пожара, вызванного дуговым пробоем (искрением) неисправной проводки. В отличие от промышленных систем дуговой защиты, наблюдающих за точечными… Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередачи (ЛЭП) переменного тока.
Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании… Ли́ния элѐктропереда́чи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции. Слаботочная система (система слабых токов) — техническая система, выполняющая функции сбора, обработки и передачи информации, функционирование элементов которой в ее границах обеспечивается слабыми электрическими токами. Термин «слаботочная» не определяется конкретной величиной тока и используется, когда токи элементов или проводников по каким-либо конкретным обстоятельствам считаются слабыми.
Под проводной системой слабых токов понимается совокупность каналов, трасс, кабелей, кроссов, элементов… Электромехани́ческий фильтр (ЭМФ) — это фильтр, обычно используемый вместо электронного фильтра радиочастот, основное назначение которого: пропускать колебания в определенной полосе частот и подавлять остальные. В фильтре используются механические колебания, аналогичные подаваемому электрическому сигналу (это один из типов аналоговых фильтров). На входе и на выходе фильтра стоят электромеханические преобразователи, которые преобразуют электрические колебания сигнала в механические колебания рабочего… Электротепловая аналогия — метод расчёта тепловых систем, сводящий их расчёт к расчёту эквивалентных линейных электрических схем. Для этого тепловые величины (температура, количество теплоты, тепловой поток…) заменяются их электрическими аналогами (напряжение, заряд, ток…).
Затем рассчитывается электрическая схема и находится искомая тепловая величина. Метод опирается на тождество математического аппарата теплофизики и электротехники: распространение тепла и электрического тока описывается одними… Кле́ммная коло́дка — электроустановочное изделие, предназначенное для соединения проводов. Представляет собой пару (или больше) металлических контактов с узлами крепления к ним проводов в диэлектрическом корпусе. Варианты названия: клеммник, клемма, клеммный блок, терминальный блок, КБ, клеммный зажим, клеммный соединитель. Тири́сторно-и́мпульсная систе́ма управле́ния (сокр. ТИСУ) — комплекс электронного и электромеханического оборудования для управления различными электрическими нагрузками в системах, имеющих нерегулируемый источник постоянного тока (тяговые двигатели (ТД) электровозов, тепловозов, МВПС, теплоходов, атомоходов, подвижного состава трамваев и троллейбусов и т.
п.). Ограничитель перенапряжений нелинейный (ОПН) — электрический аппарат, предназначенный для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. ОПН также можно назвать разрядником без искровых промежутков. ОПН на сегодняшний день являются одним из эффективных… Иони́стор (суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор) — электрохимическое устройство, конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита. По характеристикам занимает промежуточное положение между конденсатором и химическим источником тока. Приведённые ниже таблицы являются списками типоразмеров гальванических элементов, аккумуляторов и батарей, которые применяются в бытовой электронной аппаратуре. Обратите внимание, что существуют и другие типоразмеры, не указанные в таблице, но они отсутствуют в свободной продаже вследствие прекращения выпуска или смены технического назначения. Например, не перечислены батареи для ламповой радиоаппаратуры. Также стоит обратить внимание на различие понятий «батарея» и «элемент питания». Вообще, батарея…

Подробнее: Типоразмеры гальванических элементов

Воздушный автоматический выключатель (силовой автоматический выключатель, автоматический выключатель) — электрический аппарат, который способен включать, проводить и отключать электрический ток. Автоматическое отключение электрической цепи происходит при перегрузках и коротком замыкании. Отключение токов перегрузки и короткого замыкания автоматическим выключателем должно производиться в соответствии с заданными времятоковыми характеристиками. Устройство дифференциального тока (УДТ), (англ. residual current device, RCD): Контактное коммутационное устройство, предназначено для того чтобы включать, проводить и отключать электрические токи при нормальных условиях эксплуатации и размыкать контакты, когда дифференциальный ток достигает заданного значения при установленных условиях. В качестве УДТ используют автоматический выключатель, управляемый дифференциальным током, без встроенной защиты от сверхтока (ВДТ) и автоматический выключатель… Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Электро́нная ла́мпа, радиола́мпа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами. Конечная кольцевая проводка или кольцевая проводка (неформально называемая также ring main или просто кольцо (ring)) это принцип разводки проводов, разработанный и используемый главным образом в Соединённом Королевстве, предусматривающий по два независимых проводника для фазы, нейтрали и защитного заземления в здании для каждой подключённой нагрузки или розетки. Токоограни́чивающий реа́ктор — электрический аппарат, предназначенный для ограничения ударного тока короткого замыкания. Включается последовательно в цепь, ток которой нужно ограничивать, и работает как индуктивное (реактивное) дополнительное сопротивление, уменьшающее ток и поддерживающее напряжение в сети при коротком замыкании, что увеличивает устойчивость генераторов и системы в целом. Исто́чник, или генера́тор, опо́рного напряже́ния (ИОН) — базовый электронный узел, поддерживающий на своём выходе высокостабильное постоянное электрическое напряжение. ИОН применяются для задания величины выходного напряжения стабилизированных источников электропитания, шкал цифро-аналоговых и аналого-цифровых преобразователей, режимов работы аналоговых и цифровых интегральных схем и систем, и как эталоны напряжения в составе измерительных приборов. Точности измерения, преобразования и стабильность… Бортовая система электроснабжения летательных аппаратов (бортовая СЭС ЛА) — система электроснабжения, предназначенная для обеспечения бортового электрооборудования летательного аппарата электроэнергией требуемого качества. Системой электроснабжения принято называть совокупность устройств для производства и распределения электроэнергии. Начиная с 20-х годов прошлого века, на самолётах стали использоваться генераторы постоянного тока на 8, затем — на 12, и, наконец, на 27 вольт. Ограничитель тока короткого замыкания (ОТКЗ) — устройство, ограничивающее ток короткого замыкания без полного разъединения сети. Устройство предназначено в первую очередь для выполнения защитной функции. Различают несколько типов ОТКЗ: сверхпроводниковые, твердотельные, индуктивные. Балласт — устройство, предназначенное для ограничения тока в электрической цепи. Существует большое количество реализаций балласта, различаясь по сложности реализации. В простейших случаях это могут быть последовательно соединённые с нагрузкой резисторы, например, для ограничения электрического тока через светодиод или неоновую лампу. В случае же более мощной нагрузки они не подходят ввиду больших тепловых потерь при использовании активного сопротивления, в связи с этим применяют реактивное сопротивление… Указатель повреждённого участка (УПУ, ИКЗ — индикатор короткого замыкания, УТКЗ — указатель тока короткого замыкания) — устройство для определения повреждённого участка линии электропередачи и сигнализации о произошедшей аварийной ситуации. В зависимости от назначения и исполнения индикаторы короткого замыкания устанавливаются в ячейку распределительного устройства, на опору воздушной линии электропередачи или непосредственно на фазный провод линии. Кроме того УПУ бывают в переносном исполнении… Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию. Вентильный реактивный электродвигатель (ВРД) — это бесколлекторная синхронная машина, на обмотки статора которой подаются импульсы напряжения управляемой частоты, создающие вращающееся магнитное поле. Вращающий момент возникает за счет стремления ротора к положению, при котором магнитный поток статора проходит по оси ротора, изготовленного из магнитомягкого материала, с наименьшим магнитным сопротивлением. Дио́д (от др.-греч. δις — два и -од — от окончания -од термина электрод; букв. «двухэлектродный»; корень -од происходит от др.-греч. ὁδός «путь») — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока. Батарея (фр. batterie) — группа соединённых параллельно или последовательно электрических двухполюсников. Обычно под этим термином подразумевается соединение электрохимических источников электроэнергии/электрического тока (гальванических элементов, аккумуляторов, топливных элементов). Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, силы тока, сопротивления и т. д.).Для силовых трансформаторов ГОСТ 16110-82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»:п. 9.1.7. Метод вертикального электрического зондирования (ВЭЗ) — метод разведочной геофизики. Относится к электроразведке, входит в группу методов кажущегося сопротивления.

Подробнее: Вертикальное электрическое зондирование

Трансформа́тор (от лат. transformare — «превращать, преобразовывать») — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты. Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений. Структура БДПТ проще, чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ). Индукцио́нный нагре́в — метод бесконтактного нагрева электропроводящих материалов токами высокой частоты и большой величины. Супермахови́к — один из типов маховика, предназначенный для накопления механической энергии. По сравнению с обычными маховиками, способен сохранять больше кинетической энергии. Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°). Вакуумный выключатель — высоковольтный выключатель, в котором вакуум служит средой для гашения электрической дуги. Вакуумный выключатель предназначен для коммутаций (операций включения-отключения) электрического тока — номинального и токов короткого замыкания (КЗ) в электроустановках. Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель). Ключ (переключатель, выключатель) — электрический коммутационный аппарат, служащий для замыкания и размыкания электрической цепи. Стойкие к высокой температуре кабельные изделия — кабели и провода, токопроводящие жилы и изоляция которых способны выполнять свои функции на достаточно высоком уровне в условиях длительного комплексного воздействия высоких температур, механических нагрузок и других факторов. :5Развитие современных технологий часто обусловливает жесткие условия эксплуатации проводов и кабелей при их использовании для передачи электроэнергии и сигналов от датчиков, сигналов к исполнительным механизмам в системах управления… Электри́ческий аккумуля́тор — химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах. Крайтро́н — газонаполненная лампа с холодным катодом, применяется как очень быстрый ключ (включатель). Одна из ранних разработок фирмы EG&G (англ.).

Упоминания в литературе (продолжение)

В настоящее время в малогабаритных транзисторных радиопередающих устройствах применяются микрофоны различных типов, но чаще всего разработчики отдают предпочтение динамическим, конденсаторным и электретным микрофонам. При этом выбор микрофона осуществляется с учетом его технических характеристик и параметров, основными из которых являются чувствительность, номинальный диапазон частот, характеристика направленности, модуль полного электрического сопротивления, а также масса, габаритные размеры и т. п. Для конденсаторных микрофонов не менее важной характеристикой является уровень эквивалентного звукового давления. Носить GIGABYTE Pure Classic 3.0 с собой в качестве постоянного устройства резервирования для мобильных ПК или просто персональной медиабиблиотеки очень удобно, благодаря штатному полужесткому чехлу с широкой застежкой, демпфирующему тряску и несильные удары. Масса накопителя 150 г; скоростным его назвать нельзя, поскольку размещенный в корпусе жесткий диск Toshiba MK3259GSXP с частотой вращения пластин 5400 об/мин отнюдь не бьет рекордов производительности. Тестовый пакет HD Tune Pro 5.0 выявил среднюю скорость чтения на уровне 63,7 Мбайт/с, а записи – 55,7 байт/с. Это фактически вдвое выше, чем для типичного внешнего НЖМД с интерфейсом USB 2.0, но – только вдвое. Последний тип теплообменника – медный. Его положительные качества – устойчивость к коррозии, небольшой вес и объем (низкая инерционность), компактность. К недостаткам медных теплообменников принято относить низкую надежность. Но в настоящее время это, скорее, дань традиции, чем объективная реальность. Дело в том, что медный теплообменник способен при значительно меньших размерах передавать больше тепла, и на единицу его массы приходится значительно большее тепловое воздействие, чем у стального и, особенно, чугунного теплообменника. Именно поэтому в котлах старых конструкций теплообменник быстро разрушался. В современных котлах по мере нагрева воды мощность горелки уменьшается до 30 % (а у некоторых моделей и более), снижается и температурное воздействие на теплообменник, что продлевает срок его службы. Практика показывает: по долговечности медные теплообменники котлов, оснащенных необходимыми функциями, практически не уступают чугунным. Относительно типа ходового оборудования копровые устройства различаются по условиям области использования. Катки и рельсоколесный ход применяются для тяжелого оборудования, установленного на одном месте. Пневмоколесный ход используется достаточно редко, так как перемещение оборудования производится на небольшое расстояние, при этом эксплуатация возможна только на сильных опорных поверхностях. Гусеничный ход широко используется для копровых гусеничных агрегатов, применяемых в строительстве, изготавливаются большой массой, с высокой степенью подвижности, не так требовательны к качеству опорной поверхности и гладкости рабочей площади. Метрологией называют науку об измерениях, методах и средствах обеспечения их единства, способах достижения требуемой точности. Измерением называют нахождение значения физической величины опытным путем с помощью технических средств. Измерения позволяют установить закономерности природы и являются элементом познания окружающего нас мира. Различают измерения прямые, при которых результат получается непосредственно из измерения самой величины (например, измерение температуры тела медицинским термометром, измерение длины предмета линейкой), и косвенные, при которых искомое значение величины находят по известной зависимости между ней и непосредственно измеряемыми величинами (например, определение массы тела при взвешивании с учетом выталкивающей силы, определенной вязкостью жидкости по скорости падения в ней шарика). Технические средства для производства измерений могут быть разных типов. Наиболее известными являются приборы, в которых измерительная информация представляется в форме, доступной для непосредственного восприятия (например, температура представлена в термометре длиной столбика ртути, сила тока – показанием стрелки амперметра или цифровым значением). К основным недостаткам чугунных радиаторов относятся большая удельная масса (с этим связаны повышенные расходы на их транспортировку и монтаж), большая тепловая инерционность, восприимчивость к импульсным механическим воздействиям и, когда речь идет о массовом продукте отечественного производства, не вполне отвечающий современным требованиям внешний вид. Геймерские компьютеры собираются в корпусах формфактора «башня», а еще лучше «супербашня» – с десятком посадочных мест под 5,25-дюйм накопители, с пятью—семью вентиляторами и блоком питания на киловатт—полтора. Это верно. Но компоненты современных ПК уже настолько энергоэффективны, что собрать вполне пригодную для игр конфигурацию можно в существенно меньшем корпусе, рассчитанном на системные платы micro-ATX, что лишний раз подтверждает системный блок Vulcan компании NZXT. При габаритах 180×422,5×406 мм он обладает массой 5,8 кг, оснащен съемной ручкой для переноски (геймеры – народ мобильный), а также выведенными на верхнюю панель портами USB 2.0, eSATA и аудиогнездами. Внешних отсеков предусмотрено по два для комплектующих обоих стандартных типоразмеров – 5,25– и 3,5-дюйм плюс два 3,5-дюйм внутренних. В переднем и верхнем отсеках корпуса размещены 120-мм вентиляторы – тот, что сверху, еще и с синей светодиодной подсветкой. Предусмотрена возможность монтажа системы водяного охлаждения. Источники питания должны иметь повышенное вторичное напряжение, чтобы обеспечить устойчивое горение дуги. Для этого в сварочную цепь включают два сварочных трансформатора с последовательно включенными вторичными обмотками или применяют трансформатор типа ТСДА с повышенным вторичным напряжением холостого хода. Осциллятор обеспечивает быстрое и легкое возбуждение и устойчивое горение дуги. Применяют газоэлектрические горелки типов ГРАД-200 и ГРАД-400, отличающиеся легкостью. Горелка ГРАД-200 массой 0,2 кг допускает сварочные токи до 200 А, а горелка ГРАД-400 массой 0,4 кг – до 400 А. Применяются установки УДАР-300 и УДАР-500 (номинальный сварочный ток 300 и 500 А). Взамен этих установок выпускаются установки типов УДГ-301 и УДГ-501. Установки типов УДГ-301 и УДГ-501 применяют для сварки сплавов легких металлов в аргоне. Такие установки имеют однофазный силовой трансформатор с неподвижным подмагничиваемым шунтом. Сердечник шунта с обмоткой, питаемой постоянным током, расположен перпендикулярно стержням трансформатора, на которых находятся секции первичной и вторичной обмоток. Два диапазона регулирования сварочного тока получают при параллельном соединении секций обмоток – большие токи и при их последовательном соединении – малые токи. В пределах каждого диапазона плавное регулирование тока осуществляют подмагничиванием шунта, изменяя ток, питающий его обмотку. Внешне SVEN STREAM выглядят как обычные, разумных размеров (220×185×310 мм, масса 9 кг) компьютерные колонки среднего ценового диапазона мощностью 80 Вт с магнитным экранированием корпуса. Если же присмотреться к ним пристальнее, профессиональные элементы конструкции начинают бросаться в глаза. Прежде всего – особый кабель, которым соединяются два монитора между собой. Это не обычный двухжильный проводок, а хорошо экранированный четырехжильный кабель во внушительной оплетке. Раз тракту передачи сигнала уделяется такое внимание, значит, похоже, и с воспроизведением самого сигнала все должно быть в порядке. При этом следует отметить особенности дефектоскопии изделий аэрокосмической техники: разнообразие материалов контролируемых деталей как по своей природе, так и по свойствам; сложность контролируемых деталей по форме и разнообразие по массе; во многих случаях – недостаточно технологичные доступы, что может вызвать дополнительные демонтажно-монтажные работы; наличие контроля многослойных конструкций деталей, установленных в конструкциях, покрытых защитными пленками и имеющих загрязненную поверхность; своевременное обнаружение дефектов, возникающих в процессе эксплуатации по различным причинам – производственным, конструктивным и др. Защищенные ноутбуки «для руководителей среднего и высшего звена, которым часто требуется ездить в командировки». Соответственно машины отличаются живучестью, небольшой массой и увеличенным ресурсом аккумулятора. CF-W7 выдерживает падение с высоты до 76 см во включенном состоянии, в корпусе имеется специальная дренажная система. Время автономной работы – до 9,5 ч (по методике JEITA 1.0 Measurement Method Vista Model). www.panasonic.ru Защищенный UMPC. Модель предназначается для автоматизации полевых работ в нефтегазовом секторе, МВД и ГИБДД, экстренных служб и др. Система оборудована процессором Intel Atom со средствами снижения энергопотребления, функционирует под управлением Windows XP или Windows Vista. Масса – 1060 г, экран выполнен на специальной 5,6-дюйм матрице, изображение на которой хорошо видно при прямом солнечном освещении. По словам представителя фирмы-изготовителя, время работы от одной зарядки достигает 9 ч. www.panasonic.ru В последние годы все большее развитие в системе мониторинга текущих изменений состояния арктической климатической системы получают автономные заякоренные измерительные комплексы (или ПБС – притопленная буйковая станция), с помощью которых выполняется сбор информации в фиксированной точке в течение продолжительного (как правило, в течение одного года) периода времени. Автономные заякоренные буйковые станции, наряду с экспедиционными судовыми средствами получения информации, являются одним из мощнейших инструментов сбора данных о гидрофизическом состоянии водной толщи и протекающих в ней процессов. При этом перечень параметров, которые возможно регистрировать при помощи заякоренных станций, является весьма широким и определяется исключительно списком уже существующих приборов, предназначенных для измерения характеристик состояния морской среды и способных работать в автономном режиме. Кроме этого, подобные системы являются единственной возможностью получить достоверную оценку параметров динамического состояния водной толщи: скоростей и направлений морских течений, их сезонной и межгодовой изменчивости, характеристик приливных течений и пр. Кроме того, в настоящее время наряду с приборами, устанавливаемыми в составе ПБС на фиксированных горизонтах, в практику океанографических наблюдений все чаще входят профилографы, осуществляющие вертикальное перемещение вдоль несущего троса комплекса в пределах выбранного диапазона глубин и записывающие информацию о вертикальном распределении основных параметров состояния (температура, соленость, скорость течения) водных масс. Чем больше интенсивность ЭМП, тем большее влияние оно оказывает на организм человека. Следующая очень важная характеристика ЭМП мобильного телефона, определяющая его биологическое действие (влияние на организм человека), – это удельная мощность излучения (Specific Absorption Rates – SAR). SAR определяется как удельная поглощенная мощность, выраженная на единицу массы тела, является средним значением поглощенной мощности всем телом или его частью за определенной промежуток времени или за 1 импульс, измеряется в ваттах на 1 кг (Вт/кг). Ее рассчитывают теоретически или оценивают экспериментально. SAR бывает различной у различных телефонов, кроме того, на ее величину влияет тип антенны. Выделяют такие три типа антенн, как: встроенная (обозначается буквой – В), диполь (D), спиральная (H). Чем меньше SAR, тем меньшее воздействие оказывает ЭМП мобильного телефона на организм человека. В таблице 3 представлен перечень телефонов с различными значениями SAR. Ноутбук уверено разместился на подставке Cooler Master NotePal X3, рассчитанной на модели с диагоналями вплоть до 17 дюймов (габариты – 400 x 310 x 71 мм, масса – 0,9 кг). Непосредственно под днищем ноутбука оказалась верхняя часть подставки из металлической сетки с логотипом изготовителя в центре. Основную работу по отводу тепла выполняет размещенный ниже 200-мм вентилятор с синей подсветкой и регулируемой вручную скоростью вращения – от 500 до 850 об/мин. Уровень шума при его работе даже при максимальной нагрузке не превышает 23 дБ и субъективно оценивается как низкий, вентилятор самого ноутбука в интенсивном режиме гудит гораздо заметнее. Наше знакомство с любой мобильной техникой начинается с оценки габаритов и массы изделия. Для ноутбука Dell эти характеристики таковы: 357×256×37 мм и 3,2 кг вместе с блоком питания и сетевым кабелем. Основа платформы ноутбука – двухъядерный 1,66-ГГц ЦП Intel Mobile Core 2 Duo T5450 (ядро Merom, 2-Мбайт L2-кэш, частота системной шины 667 МГц) и набор системной логики Intel GM965 Express. В протестированном изделии установлены два модуля ОЗУ DDR2-667 общим объемом 1 Гбайт и 120-Гбайт жесткий диск SATA компании Fujitsu, который защищен от ударных воздействий специальным демпфером Strike Zone (факультативно). В наборе, адресованном истинным ценителям продукции Cooler Master, всего три предмета (не считая оригинальной упаковки и небольшого контейнера с инструментами для сборки), но зато каких! Фирменный полноразмерный ATX-корпус COSMOS Black Label (габариты – 628×598×266 мм, масса – 16,9 кг), универсальная система охлаждения Hyper Z600 (совместима с ЦП для платформ Intel LGA 775 и AMD Socket 940/AM2/AM2+), разумеется, тоже Black Label и блок питания, сертифицированный для SLI-систем. Изготовитель предлагает два варианта комплекта – вместе с 850-Вт Real Power M850W или 700-Вт UCP 700W блоком питания (код для заказа RC-1000S-KKN1-GP или RC-1000S-KKN2-GP). Среди особенностей выполненного из алюминия корпуса отметим продуманную комбинированную схему вентиляции, для системы охлаждения характерен невысокий уровень шума, а на блок питания распространяется пятилетняя гарантия. Для характеристики значения ЭМП, создаваемого сотовым телефоном, взаимодействующего с телом человека, используется значение поглощенной дозы, т. е. того значения энергии поля, которое поглощается единицей массы ткани – удельная поглощенная мощность (УПМ). Эту величину выражают в ваттах на килограмм (Вт/кг) или милливаттах на грамм (мВт/г) и обозначают как SAR (англ. – Specifc Absorption Rate) – уровень излучения энергии ЭМП, выделяющейся в тканях тела человека за 1 с. Обычно SAR определяют для ткани массой 1 или 10 г за интервал 6 мин. Для того чтобы поля радиочастот могли вызвать негативные последствия для здоровья, величина УПМ должна превышать 4 Вт/кг. Для предотвращения электрических повреждений блоков управления, вызванных сверхтоками, перед снятием клемм с аккумулятора убедитесь, что выключатель зажигания находится в положении OFF. При отключении аккумулятора сначала обязательно отсоедините провод массы. При снятии клеммы с аккумулятора данные, сохраненные в памяти (к примеру, в радиоприемнике или в блоке управления), стираются. В связи с этим сначала необходимо сохранить содержимое памяти соответствующих электронных блоков. Перечисленные требования удовлетворяются правильным выбором материала базовых деталей и конструктивных решений, которые являются общими, несмотря на многообразие форм. При конструировании базовых деталей стремятся к созданию конструкций жестких, но имеющих малую массу; простых по конфигурации, но обеспечивающих высокую точность; дающих экономию металла, но учитывающих возможности литейной технологии и технологии сварных конструкций. Конструирование базовых деталей во многом опирается на богатый практический опыт, накопленный за долгие годы у нас в стране и за рубежом. Константин Яковлев, руководитель отдела технического маркетинга российского отделения GIGABYTE: Речь идет об удельной массе меди. Две унции (56,7 г) меди в данном случае расходуются на каждый квадратный фут (929 см2) поверхности. В результате, в частности, оптимизируется теплоотвод от активных участков платы. Температура системной платы под максимальной нагрузкой в наиболее нагретых областях не превышает 50 °C – это подтверждают независимые измерения на промышленных тепловизорах. В СССР первый опытный образец ИС, напоминающий «цельную схему» Джека Килби, в 1959 г. изготовила группа разработчиков КБ Рижского завода полупроводниковых приборов (РЗПП): Карнов, Осокин и Пахомов. В 1962-63 гг. РЗПП по заказу ВМФ выпустил несколько тысяч монолитных схем-триггеров под индексом «Р12-2». Они предназначались для использования в аппаратуре корабельных АТС. Конструктивно «Р12-2» были выполнены в виде «таблетки» из круглой металлической чашечки диаметром 3 мм и высотой 0,8 мм. В ней размещался кристалл германия (с двумя транзисторами и двумя резисторами) и заливался полимерным компаундом, из которого выходили короткие внешние концы выводов из золотой проволоки диаметром 50 мкм, приваренные к кристаллу. Масса «Р12-2» не превышала 25 мг.[10] Как видно из выражения (1.9), величина емкости конденсатора сглаживающего фильтра обратно пропорциональна длительности фронта импульса tф. Следовательно, уменьшая эту величину при заданном уровне пульсаций, получим возможность применять конденсаторы меньшей емкости, снизить массу и габариты источника питания. Одним из способов повышения эффективности этого параметра является применение в схеме автогенератора с насыщающимся трансформатором единого базового резистора Rб. Вариант схемы автогенератора с таким резистором представлен на рис. 1.9. Система охлаждения для платформ Intel LGA775/1156/1366 и AMD AM2/AM3. Модель оборудована 120-мм вентилятором с частотой вращения от 700 до 1600 об/мин, радиатором оригинальной ячеистой конструкции, шестью 6-мм тепловыми трубками с никелевым покрытием и медной подложкой. При этом новинка имеет небольшую массу (740 г), низкий уровнь шума (30 дБ при 100 %-ной нагрузке). www.glacialtech.ru Паспортный световой поток (2000 ANSI-лм) и разрешение LCD-матриц (1024×768) на сегодня совершенно стандартны. Однородность засветки 80 %, контрастность – до 600:1. Набор входных интерфейсов, к сожалению, не содержит разъемов HDMI и DVI, в последнее время ставших стандартом де-факто. Предусмотрено два 15-контактных гнезда D-Sub, одно из которых может служить как VGA-входом, так и VGA-выходом, гнезда композитного и компонентного сигналов, а также S-Video. Встроенный динамик имеет мощность 2 Вт. Возможно, в некоторых случаях он будет способен заменить аудиторную акустическую систему. Проектор способен отображать компьютерный сигнал с разрешением до 1600×1200. Срок службы лампы 3000 ч в экономичном режиме и 2000 ч в нормальном. Акустический шум соответственно 29 и 34 дБ. Габариты – 374×197×495 мм, масса проектора – 7,6 кг. Но в большинстве сценариев применения современных внешних жестких дисков короткий кабель – благо, поскольку не запутывается и не занимает лишнего пространства ни на рабочем месте, ни в сумке или кармане. Именно в кармане: при габаритах 118×78×16 мм и массе 152 г это устройство не требует специализированного контейнера для переноски. Дополнительную защиту жесткому диску внутри обеспечивает корпус. Таким образом, при устанавлении определенным образом датчиков перепада давления на несущих поверхностях ЛА, при использовании алгоритмов обработки информации представляется возможным синтез систем контроля, например, таких параметров траектории полета, как: угол атаки α относительно вектора воздушной скорости Vв; воздушная скорость полета Vв; масса т самолета в полете; положение центра тяжести хТ самолета в полете; статическое давление ?cm. Синтезированные таким образом системы контроля позволяют не только измерить эти параметры, но и строить области их критических (допустимых) значений. При этом нужно устранить зазоры, обычно имеющиеся между стеновым перекрытием и оконным блоком. Помимо этого, во время устройства окон переплеты следует размещать, подгоняя вплотную друг к другу. Профессиональные строители и архитекторы (на стадиях возведения постройки и составления проектного чертежа соответственно) для определения степени воздухопроницаемости окна применяют специальную формулу. Так, было доказано, что его следует считать герметичным, если масса воздуха, проходящего через 1 м2 проема, не превышает 10 кг. Общая дорожная масса (с заряженным штатным аккумулятором на 62 Вт·ч и блоком питания) IdeaPad Y570 достигает 3 кг. Ноутбук оснащен оптическим накопителем, тремя портами USB, комбинированным USB/eSATA, адаптером карт памяти «6 в 1», выходами RJ-45, D-Sub и HDMI. Весьма интересной особенностью для компьютерных энтузиастов наверняка окажется наличие двух монтажных разъемов Mini-PCle, доступных под крышкой на днище ноутбука. Используя их и стандартные мини-платы расширения (с адаптерами WiMAX, например; в дополнение к уже встроенным в систему WiFi 802.11n и Bluetooth), можно при необходимости самостоятельно расширить функциональность устройства. ReadyNAS Pro Business Edition – довольно компактное (250×170×285 мм при массе 7,5 кг без жестких дисков) устройство. Доставшийся нам на тестирование экземпляр с артикулом RNDP6350 обеспечивает совместную работу трех жестких дисков по 500 Гбайт каждый (модификация RNDP6310 функционирует с тремя накопителями по 1000 Гбайт, RNDP6610 – с шестью 1000-Гбайт накопителями). Базовую функциональность аппарата обеспечивает установленный в нем фактически полноценный компьютер с двухъядерным 1,8-ГГц процессором Intel, 1-Гбайт оперативной памятью DDR2 (возможно расширение до 4 Гбайт), 128-Мбайт флэш-накопителем, несущим в себе ОС, двумя портами Gigabit Ethernet, тремя разъемами USB 2.0. Охлаждение системы осуществляется вентиляторами с вполне приемлемым уровнем шума. Создатели внешнего накопителя Freecom MOBILE DRIVE Sq решили сломать устоявшееся предубеждение и выпустили устройство, отвергающее все и всяческие шаблоны. Никакой прямоугольности; симметричная, близкая к квадратной форма чуть оплывшей по краям от тепла ледяной пластины. Такое решение предложил Арман Эммами, лауреат многочисленных наград в области промышленного дизайна. Материал поверхности накопителя тоже отнюдь не самый ходовой – матированная нержавеющая сталь. Интерфейс Freecom MOBILE DRIVE Sq – новейший USB 3.0. Размеры и масса в зависимости от модификации либо 12×12×1,05 см и 195 г, либо 12×12×1,30 см и 210 г. Литые диски имеют более разнообразный дизайн. Их отличает более высокая точность изготовления, что значительно улучшает качество балансировки колес; меньшая, по сравнению со стальными штампованными дисками, масса, а значит, снижение нагрузок на подшипники ступиц, трансмиссию, подвеску; лучшая теплопроводность, что позволяет легче отводить тепло от тормозных механизмов при нагревании. К недостаткам можно отнести следующий факт: при очень сильных ударных воздействиях такой диск может треснуть. Принцип выражает энергетические взаимодействия, которым следует подвергнуть объект, чтобы получить измерительную информацию. Например, измерение массы вещества при помощи взвешивания с использованием силы тяжести, пропорциональной массе; измерение температуры с использованием термоэлектрического эффекта и т.д. При внимательном рассмотрении выясняется, что устройство размером 241×186×9 мм и массой 662 г лишь чуть толще и тяжелее, чем iPad 2, но заметить это можно, лишь одновременно взяв оба планшета в руки. Увеличение массы обусловлено применением значительно более крупной батареи, но при этом компания заверяет, что время работы нового iPad от батарей будет таким же, как у предшествующей модели, поскольку приемопередатчик 4G и экран повышенной четкости потребляют намного больше энергии. Если для электроприемников требуется защитное зануление, потребителю следует соорудить повторное заземление нулевого провода. Этого можно не делать, если повторное заземление есть на опоре ВЛ и длина ответвления не превышает 10 м. Повторное заземление на ВЛ определяют по наличию заземляющего спуска, к которому присоединены нулевой провод, а также крюки или штыри изоляторов. Заземляющий спуск прокладывают по стойке опоры до заземлителя (одной или нескольких труб, полос или иной металлической массы, заглубленной в землю). Длина деталей заземлителя, число стержней или труб и глубина их заложения зависят от свойств грунта в месте сооружения и уровня грунтовых вод. Серьёзное внимание уделяется улучшению свойств резины (особенно свойств граничных слоёв полимеров в микрогетерогенной многокомпонентной эластомерной матрице), выбору оптимальной комбинации каучуков для каждой детали шин, разработке новых наполнителей и методов их диспергирования. Ведутся работы по увеличению реальной прочности рези путём разработки новой технологии переработки каучуков большой молекулярной массы и изыскания вулканизующих и стабилизирующих систем, обеспечивающих наименьшую степень деструкции молекулярных цепей в процессе изготовления и эксплуатации изделий из резиновых смесей. Важное значение для управления процессами производства и свойствами готовых изделий имеет исследования реологического поведения резиновых смесей при их изготовлении и переработке. 1) массой ручного инструмента в сборе (включая массу вставного инструмента, присоединяемых рукояток, шлангов и т. п.), которая не должна превышать для инструментов общего назначения, используемых для работы при различной ориентации в пространстве, 5 кг и для инструментов специального назначения, используемых при выполнении работ вертикально вниз и горизонтально, 10 кг;

Электрика автомобиля: краткое обучение для автолюбителя

Содержание статьи

Электрический ток

Современный автомобиль не может работать без электричества. При помощи электрического тока происходит зажигание рабочей
смеси в бензиновых двигателях, пуск двигателя стартером, приводятся в действие световая и звуковая сигнализация, контрольно-измерительные
приборы, освещение и дополнительное оборудование. Кроме того, тенденции мирового автомобилестроения в последнее время направлены на все более
широкое применение электрической тяги в автомобилях (гибридные силовые установки, топливные элементы и электромобили).

Для получения электрической энергии на автомобиле устанавливают источники электрического тока- генератор и аккумуляторную батарею.
Аккумулятор используется для пуска двигателя и для питания электроприборов при неработающем двигателе. Генератор питает электрооборудование автомобиля при работающем двигателе, и, кроме того, подзаряжает аккумуляторную батарею. Генератор превращает механическую энергию от вращения коленвала в электрическую, а аккумулятор- химическую энергию в электрическую.

Генератор и аккумулятор относятся к источникам электрического тока, все остальные электроприборы автомобиля являются его потребителями. Источники и потребители электрического тока соединяются между собой с помощью проводников, в качестве которых, как правило, служит медный провод. Провод обязательно должен находиться в изоляции во избежание замыкания с другими проводниками и, как следствие, перегорания электроприборов.

Все материалы по электропроводности делятся на проводники и непроводники (изоляторы). Не вдаваясь в дебри физики, просто отметим, что в проводниках
находится большое количество свободных электронов, которые хаотично движутся. При приложении электрического напряжения к проводнику свободные электроны начинают двигаться в одном направлении, создавая электрический ток. В изоляторах же свободных электронов практически нет, поэтому и ток создавать нечем. К проводникам относится большинство металлов, уголь, водные растворы щелочей и кислот. К изоляторам- резина, пластмассы, стекло и т.п.

Замкнутая и разомкнутая цепь

Если источник тока, провода и потребители соединить между собой в замкнутый контур, то мы получим электрическую цепь, по которой потечет электрический ток. Характерной особенностью электрической цепи на автомобиле является то, что одним из проводов служит масса (металлические части кузова автомобиля), а другим проводом служат изолированные провода. Поэтому такая электрическая цепь называется однопроводной.

Между полюсами (выводами) любого источника тока существует электрическое напряжение (обозначается U), измеряемое в вольтах. Сила электрического тока (обозначается I) измеряется в амперах. Всякий проводник и потребитель создает сопротивление электрическому току (обозначается R), которое измеряется в омах. Между этими тремя величинами существует зависимость, которую выражает знаменитый закон Ома: I = U / R. Работа электрического тока, выполненная за 1 секунду, называется мощностью. Мощность измеряется в ваттах и обозначается P. Мощность можно рассчитать по формуле P = U * I. Электрический ток, проходящий через проводник, нагревает его. Количество выделяемого при этом тепла зависит от силы тока, сопротивления и времени прохождения тока.

Однопроводная электрическая цепь автомобиля

На автомобилях приборы электрооборудования питаются постоянным током. Постоянным называется ток, который движется в проводнике только
в одном направлении, в отличие от переменного тока, который движется в проводнике попеременно то в одном, то в другом направлении.
В каждом источнике постоянного тока различают два полюса: положительный (+) и отрицательный (-). Условно считают, что постоянный ток в цепи движется
от положительного полюса к отрицательному. На автомобилях отрицательный полюс источника тока соединяют с массой (если, конечно, кузов металлический).

Потребители или источники тока могут быть соединены между собой последовательно или параллельно. При последовательном соединении отрицательный полюс одного источника тока соединяют с положительным полюсом другого. В результате такого соединения общее напряжение будет равно сумме напряжений всех источников тока. При параллельном соединении источников тока соединяют между собой одноименные полюса- положительные с положительными, отрицательные с отрицательными. При таком соединении общее напряжение будет таким же, как у одного источника тока, а сила тока увеличится во столько раз, сколько источников тока соединены между собой.

При последовательном соединении потребителей весь ток проходит через каждый потребитель. Если выйдет из строя один из потребителей, обесточивается вся цепь. При параллельном соединении ток, разветвляясь, поступает к каждому потребителю отдельно. В этом случае выход из строя любого потребителя не влияет на работоспособность остальных.

Последовательное соединение источниковПараллельное соединение источников

Магнетизм и электромагнетизм

Все знают, что такое магнит. Также все замечали, что магниты притягивают к себе стальные предметы не только при непосредственном соприкосновении, но
и на расстоянии, что свидетельствует о наличии вокруг них магнитного поля. Каждый магнит имеет два полюса, которые условно называют северным (N) и южным (S). При сближении одноименных полюсов двух магнитов они отталкиваются, а при сближении разноименных полюсов- притягиваются.

Магнитное поле, созданное вокруг магнитов, состоит из магнитных силовых линий, направленных от северного полюса к южному. С удалением от магнита величина магнитного поля уменьшается.

Магнитное поле вокруг проводника с током

Если через проводник пропустить электрический ток, то вокруг него создается кольцевое магнитное поле без выраженных полюсов. Если же проводник свернуть в виде спирали, то при прохождении по нему тока магнитное поле образует на концах спирали полюса- северный и южный. Если в середину такой катушки поместить стальной сердечник, то образуется электромагнит, имеющий все свойства обычного магнита (очень наглядно это показано в мультфильме “Ивашка из дворца пионеров”, где главный герой с помощью электромагнита расправляется с Кащеем Бессмертным).

Простейший электромагнит

Магнитное поле электромагнита можно увеличивать или уменьшать, изменяя силу тока или количество витков катушки. С увеличением силы тока или количества витков электромагнита увеличивается его магнитное поле.

Если проводник с током поместить в магнитное поле магнита (электромагнита), то в результате взаимодействия магнитных полей проводника и магнита проводник будет выталкиваться, т.е. электрическая энергия будет превращаться в механическую. На этом явлении основана работа электродвигателей.

Принцип работы генератораПринцип работы электродвигателя

Для превращения механической энергии в электрическую используют явление электромагнитной индукции. Если замкнутый проводник вращать в магнитном поле, то в проводнике возникает электрический ток. Величина тока зависит от длины проводника, скорости пересечения,плотности магнитного поля и угла, под которым пересекаются магнитные силовые линии. На этом явлении основана работа генератора.

Вы, конечно же обратили внимание, что картинки практически одинаковы? Не удивляйтесь, это свидетельство обратимости электрических машин. Обратимость электрических машин — одинаковое устройство преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот. Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Говоря по-русски, электрогенератор будет работать лучше, чем используемый в качестве генератора соответствующий по размерам электродвигатель, и наоборот.

Обозначения на электрических схемах

Обозначения на схемах электрооборудования автомобиля, как правило, интуитивно понятны. Но, для общего развития, не мешает знать и некоторые специфические условные обозначения.

Обозначения на электрических схемах

ИТАК, запомните:

  • Постоянный ток условно течет от плюса к минусу.
  • Нельзя соединять напрямую минусовой и плюсовой провода, минуя потребителей, иначе произойдет короткое замыкание.
  • Минусовой провод присоединяется к “массе” автомобиля.
  • В электротехнике существуют только две неисправности: нет контакта, там где он должен быть, и есть контакт, там, где его не должно быть.

Фаза и ноль в электрике: определения понятным, простым языком

Владельцы домов или квартир, так или иначе, столкнутся с моментами, когда перестает функционировать какой-либо прибор, электрическая розетка или гореть лампа в люстре. Звать на помощь в таких ситуациях электрика не особо хочется — имеется большое желание исправить неполадки самостоятельно. Или может быть, например, есть какие-то познания в электросистемах, а потому работа по прокладке новых кабелей не кажется чем-то немыслимым. Как бы то ни было, в любом случае, предварительно стоит все же ознакомиться с основами электрики, с видами проводников, выяснить, как все это взаимосвязано и работает. Ведь очень важно понять, где располагается тот или иной провод — от этого будет зависеть правильность соединений и безопасность людей.

Если есть какой-то опыт работы в данной сфере, вопрос не поставит в тупик, однако для новичка может стать большой проблемой. Ниже пойдет речь о таких проводниках любой электрической сети питания как: «заземление», «фаза», «нуль», а также о том, как верно найти и отличить данные виды кабелей.

Разбираемся в основных терминах

С такими терминами, как «фаза» и «ноль» каждый сталкивается в своей жизни ежедневно. Все они тесно связаны, ведь относятся к электричеству, а это то, без чего жизнь современного человека не мыслима. Чтобы понять их природу и более или менее научиться разбираться в электрике, следует уяснить для начала ряд фундаментальных понятий.

Начинаем с основ

Электрический заряд — характеристика, определяющая способность различных тел быть источником электромагнитного поля. Носителем подобных волн является электрон. Создав электромагнитное поле можно «заставить» электроны перемещаться. Так образуется ток.

Ток — это четко направленное движение электронов по металлическому проводнику под действием существующего поля.

Виды тока

Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.

Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.

Основная характеристика переменного тока

Переменный ток – как правило это синусоида, или синусоидальный ток. Его можно охарактеризовать следующим образом: сначала он увеличивается в одном направлении, достигая максимального своего значения (амплитуды), затем начинается спад. В некоторый момент времени он становится равен «0» и потом вновь начинает нарастать, но уже в совершенно противоположном направлении.

«Фаза», «ноль» и «земля»

Самый простой случай электроцепи, по которой перемещается синусоидальный ток — однофазная цепь. Она состоит, как правило, из трех электрокабелей: по одному из них электричество подходит к приборам и элементам освещения, а по второму – оно «уходит» в противоположном направлении — от потребителя. Третьим проводником является «земля».

Провод, по которому электричество подходит к электропотребителям, называется фазой, а кабель, используемый для возвратного движения — нулем.

Самая эффективная сеть для передачи электротока — трехфазная система. Она включает в себя три фазовых кабеля и один обратный — ноль. Такой тип тока подходит ко всем жилым кварталам. Непосредственно перед попаданием в квартиры, электроток делится на фазы. Каждым фазам «присваивается» один ноль. Преимущества такой системы в том, что при сбалансированной нагрузке ток через ноль (а он в такой системе один — общий) равен нулю.

Чтобы не перепутать провода и не допустить короткого замыкания,  каждый провод окрашивают в разные цвета. Однако цвет провода не гарантирует его назначения!

«Земля» не несет никакой электрической нагрузки, а служит своего рода предохранительным элементом. В тот момент, когда что-либо в системе электропитания выходит из-под контроля, провод «земля» предотвратит поражение электротоком — по ней все избыточное напряжение будет «стекать», то есть, отводиться на землю.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Случаи обрывов в токопроводящей цепи

Если внутри отдельно взятой квартиры произошел разрыв нуля/фазы, то подключаемый прибор, как следствие, функционировать не будет.

Аналогичная ситуация возникнет и при обрыве контактов проводов любой из фаз питающих подъездный щиток. При этом все квартиры, получающие питание от данной электролинии, не будут получать электричество. Вместе с тем, в двух оставшихся цепях приборы будут функционировать, как и прежде.

Из этих схем видно, что полное отключение питания в квартирах связано с обрывом одного их проводов. Это не приводят к повреждению и выходу из строя приборов.

Самой же серьезной ситуацией является обрыв между заземляющим контуром и центральной точкой подключения всех потребителей.

В данном случае весь электроток перестает течь по рабочему нулю к «земле» (АО, ВО, СО) и начинает двигаться по пути АВ/ВС/СА к которым подведено 380 В.

Возникает «перекос фаз». В фазах с большей нагрузкой напряжение будет меньше, а с меньшей нагрузкой — больше и может достигнуть значительных величин, близким к 380 В. Это вызовет повреждение изоляционных материалов, нагрев и выход из строя оборудования. Предотвратить подобные случаи и защитить дорогое оборудование позволяет система защиты от перегрузок и высоких напряжений, монтируемая в квартирных щитках.

Варианты определения проводников «фаза»/«ноль»

Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.

Цветовая окраска проводов, как основной ориентир

Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.

Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:

  • защитным нулем стал обозначаться провод желто-зеленого цвета;
  • рабочим нулем стали называть синий/сине-белый провод;
  • фазу — провода других цветов (например, черного, красного, коричневого и прочие).

Такое обозначение актуально в настоящее время.

Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.

Отвертка-индикатор — незаменимое приспособление

Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.

Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.

Элементы отвертки:

  • корпус, выполненный из диэлектрического материала;
  • наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
  • неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
  • ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
  • контактная металлическая площадка, создающая замкнутую цепь через человека на землю.

Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.

Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.

При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.

На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.

Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.

Мультиметр — надежный помощник

Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.

Способы определения проводов:

Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.

Использование лампы накаливания

Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.

Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.

Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.

Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.

Определение сопротивления петли «ноль/земля»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

В заключении

Данный материал позволяет понять, что вообще такое фаза и ноль, какова их роль в современной электрике, каким образом можно установить, где располагается в проводке фазная и нулевая жилы. Ведь вопрос определения нуля, фазы и заземления весьма важен. Подключение некоторых видов приборов по результатам неправильной проверки может повлечь за собой негативные последствия — сгорание электроприборов, или, что еще опаснее, поражение током.

Видео по теме

Фаза и нуль в электрике: что значит

В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Линия электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

КТП

Фаза и нуль: понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.

Фаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Зачем нужен ноль в электричестве

Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.

Откуда берется ноль в электросети

Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.

Фаза, ноль и земля в проводе

Зачем нужен нуль

Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.

Как найти нуль и фазу

В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.

Проверка с помощью электролампы

Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.

Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.

Электролампа

Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Индикаторная отвертка

Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.

Пример исправной индикаторной отвертки

Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:

  1. Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
  2. Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
  3. Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).
Отвертка с изолированным жалом

В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.

Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.

Мультиметр

В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.

Пример мультиметра

Важно! Как и правила дорожного движения, правила электробезопасности обязательно нужно соблюдать, ведь электрический ток невидим, неслышим и неосязаем, и именно этим он и опасен.

Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.

Фаза и нуль в электрике: что значит

В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Линия электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

КТП

Фаза и нуль: понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.

Фаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Зачем нужен ноль в электричестве

Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.

Откуда берется ноль в электросети

Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.

Фаза, ноль и земля в проводе

Зачем нужен нуль

Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.

Как найти нуль и фазу

В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.

Проверка с помощью электролампы

Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.

Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.

Электролампа

Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Индикаторная отвертка

Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.

Пример исправной индикаторной отвертки

Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:

  1. Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
  2. Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
  3. Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).
Отвертка с изолированным жалом

В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.

Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.

Мультиметр

В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.

Пример мультиметра

Важно! Как и правила дорожного движения, правила электробезопасности обязательно нужно соблюдать, ведь электрический ток невидим, неслышим и неосязаем, и именно этим он и опасен.

Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.

нахождения величины заряда и количество заряда

Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.

Что такое электрический заряд q

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

Понятие из учебного пособия

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Основные формулы

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон сохранения

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

Закон Кулона

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон.-7 или 10 микрокулон.

Формула для решения

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

обозначение, в чем измеряется и какой её максимум

Электрическая мощность любого прибора — важный показатель, который позволяет определить возможность его работы в сетях абонента. Этот показатель применяется для расчета электрических схем и режима работы электроустановки, для обеспечения надежной работы электросетей. Чем мощность приемников будет большей, тем быстрее они выполнят нужную работу.

Что называется мощностью электрического тока

Мощность электрического тока (EP -electric power), потребляемая электрооборудованием, равна напряжению на нем, умноженному на ток, протекающий через него.

P = U*I

Данная формула показывает, в каких единицах измеряется электрическая мощность — это В⋅А.

Изменение тока

Формулировка верна для сетей постоянного тока (DC — Direct Current), а в сетях переменного тока (AC -Alternating Current) ситуация более сложна для нагрузок, которые являются реактивными. Чтобы рассчитать истинную EP, потребляемую приемником, необходимо учитывать несинусоидальные формы величин, а также углы сдвига тока опережение/запаздывание, вызванных реактивными нагрузками от присутствия в сети индуктивности (L) и конденсаторов ©. В таком случае истинная EP, будет меньше, чем простое произведение: U*I.

Треугольник мощности

Важно! Определение такого показателя потребуется при выборе источников питания AC, проектировании проводки и защите электрических цепей. Это вызвано тем, что, хотя кажущаяся энергия больше, чем истинная потребляемая EP, протекающий через нагрузку ток становится большим. Под него необходимо будет выбрать размеры проводов и устройства защиты оборудования электросети.

Виды электрических мощностей

Существует энергия, генерируемая некоторыми механизмами для создания электромагнитного и электрического поля, которая им необходима для функционирования, — это реактивная составляющая нагрузки. С другой стороны, активная составляющая показывает способность агрегата преобразовать полученную энергию в механическую работу или тепло.

Этот полезный эффект называется активной мощностью и измеряется в кВтч.

Приемники, образованные чистыми резисторами: нагревательные приборы, лампы накаливания и другие, обладают исключительно этим типом нагрузки.

Обратите внимание! Коэффициент мощности относится к активному и кажущемуся энергопотреблению установки. Кажущаяся энергия в свою очередь зависит от активной и реактивной энергии. При одинаковом потреблении активной нагрузки, чем выше потребление реактивной составляющей, тем ниже коэффициент.

Синусоидальный ток

Активная мощность

Активная — реальная или истинная мощность (Pa) выполняет фактическую работу в нагрузке и выражается в Вт.

Для однофазной цепи:

Pa = I*U* cosφ = UI PF

где:

  • φ= фазовый угол;
  • PF = cosφ -коэффициент нагрузки.

Трехфазная сеть:

Pa = 3* U* I* cosφ = 1,732 *U*I* PF

Реактивная мощность

Реактивная мощность (Pr) присутствует у электродвигателей, трансформаторов и устройств с реактивными сопротивлениями и индуктивностью. Эти устройства, как правило, индуктивные, поглощают энергию из сети, создавая магнитные поля, и возвращают ее, при смене направления синусоиды. При таком обмене энергией возникает дополнительное потребление, которое не способно быть использовано некоторыми приемниками. Этот вид называется реактивной энергией и измеряется в кВАр. Она вызывает перегрузку в линиях, трансформаторах и генераторах.

Для однофазной цепи:

Pr = U*I* sinφ

Реактивная мощность

Трехфазная сеть:

Pr = 3* U *I *sinφ

Во многих отношениях реактивную мощность можно рассматривать, как пену на бокале пива. Покупатель платит бармену за полный стакан пива, но выпивает только само пиво, которое всегда меньше.

Основным преимуществом использования распределения электроэнергии переменного тока является то, что уровень напряжения питания можно изменять с помощью трансформаторов, но не все электрооборудование потребляет реактивную мощность, которая занимает часть нагрузки на линиях электропередач.

В то время, как реальная или активная мощность — это энергия, подаваемая для работы двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения, помогая тем самым эффективно перемещать энергию через энергосистему по линиям электропередач.

Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных приборов. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, низкую освещенность шин или перегрев асинхронных двигателей.

Если потребляемая мощность больше, чем потребляемая с помощью передающих линий, ток, потребляемый от линий питания, увеличивается до такого высокого уровня, что вызывает резкое падение напряжения на стороне приемника. Если низкое напряжение будет продолжать падать — это приведет к отключению генераторирующих блоков, перегреву двигателей и выходу из строя другого оборудования.

Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку путем помещения реактивных катушек индуктивности или реакторов в линии электропередачи. Мощность этих реакторов зависит от количества видимой мощности, которая должна быть подана.

Полная мощность

Полная мощность — это энергия, подаваемая от поставщика в электросеть, для покрытия активной и реактивной составляющих.

Полная мощность

Она рассчитывается по формуле:

S = (Pa2 + Pr2 ) ½

Где: S — подача питания в цепь, В⋅А.

Кажущаяся EP будет измеряться в вольт-амперах (В⋅А) — напряжение системы, умноженное на текущий ток. Это комплексное значение, равное векторной сумме активной и реактивной энергии.

Однофазная сеть:

S = U*I

Где : U — электро потенциал, В.

Трехфазная сеть:

S = 3*U*I = 1732* U*I

Комплексная мощность

Взаимоотношения между тремя данными показателями легли в основу работы всего современного силового оборудования электрических сетей. Взаимосвязь между величинами выражается путем использования треугольника мощности. Применение векторов упрощает ряд математических операций. Преобразование комплексных чисел дает возможность установить размер комплексной мощности:

S=P+ jQ

Где: j — число, квадрат которого равен − 1 или мнимая единица.

Для примера можно проанализировать работу идеальной цепи из источника, создающего переменную ЭДС и имеющую общую нагрузку, в которой I и U, изменяются по синусоиде. В случае, когда потребление только резистивное/активное, I и U изменяют полярность синхронно, направление I не изменяет знак и всегда имеет положительное значение, в таком варианте потребляется нагрузка Pa.

В случае реактивной нагрузки — U и I имеют фазовый сдвиг на 90 градусов, а полезная энергия равна нулю. За 1/4 периода I создает реактивную нагрузку, а последующие 1/4 периода — возвращается. Когда схема состоит из параллельно включенных L и C, то, протекающие через них токи, имеют противоположные знаки. Поэтому C создает нагрузку Pr, а L гасит её.

Неактивная мощность

Неактивная или пассивная нагрузки образуется в AC-цепях. Она равняется квадратному корню из суммы (Pa2+Рr2), когда реактивная нагрузка отсутствует, то пассивная будет равна модулю |Pa|.

Присутствие нелинейных токовых искажений в сетях обусловлено несоблюдением направленности между U/I, инициированное нелинейностью сети, в частности, когда энергия обладает импульсной характеристикой. В случае нелинейных режимов возрастает полная EP. Такая нагрузка не считается активной, потребляя Pr и энергию иных токовых искажений. Она измеряется в единицах обычной мощности.

В чем измеряется электрическая мощность

Мощность — это энергия за единицу времени. Единица СИ для мощности — это ватт (Вт), который равен джоулю в секунду (Дж/с), при этом джоуль — единица СИ для энергии, а секунда — единица СИ для времени.

Единицы мощности

Умножение киловатта на час дает киловатт-час (кВт • ч), единицу, часто используемую электроэнергетическими компаниями для представления количества электрической энергии, произведенной или предоставленной потребителям. Аналогичным образом энергоемкость батарей нужно измерять в единицах ампер-часов (А-ч) или для переносных батарей в миллиамперах-часах (мА-ч).

В единицах СИ ватт имеет обозначение W. Имя сохранилось в знак признания Джеймса Уатта, который ввел термин «лошадиная сила» — старая единица мощности.

Единицы преобразования энергии:

  • Лошадиные силы (HP) — 746 Вт;
  • килоВатты (кВт) — 1×1000 Вт;
  • мегаватты (МВт) −1×1000000 Вт;
  • гигаватт (ГВт) — 1×1000000000 Вт.

Как определить максимальную мощность тока

Полезная мощность обладает наибольшим значением в случае, когда нагрузочное сопротивление — R равняется сопротивлению внутри источника — r.

R = r.

Pmax=E2 /4r

Где: E — электродвижущая сила (ЭДС) источника.

Можно рассчитать максимальную токовую нагрузку, которую будет использовать электрическое устройство, исходя из номинальной нагрузки и входного напряжения переменного тока. Номинальная энергонагрузка будет указана в технических характеристиках устройства, руководстве или на маркировке.

Так, например, если номинальное энергопотребление электрического устройства (P) составляет 12 Вт, максимальное потребление тока при различных напряжениях U= 120 В переменной сети будет:

I = 12/120 = 0,100 А или 100 мА

В переменной сети 220 В:

I = 12 / 220= 0,055A или 55 мА

Мощность электрооборудования

Во всех паспортных данных на электрооборудование указывают не только его активную нагрузку, но и коэффициент мощности, который является очень важным параметром, в сетях переменного тока AC и определяет, насколько эффективно электроэнергия используется нагрузкой.

Косинус фи

Это рациональное число от −1 до 1, и никогда не равняется единице. Коэффициент мощности системы зависит от типа нагрузки: C, L или R. Первые две отрицательно влияет на PF = cosφ системы. Его большое значение приводит к увеличению тока, потребляемого оборудованием.

PF определяется как отношение реальной активной нагрузки к полной. Его также можно определить, зная по косинусу фазового сдвига между U и I в AC-цепи. Улучшение PF направлено на оптимальное использование электроэнергии, сокращение на электроэнергию и снижение потерь в сетях. Силовые трансформаторы не зависят от коэффициента мощности. Если он близок к единице, для того же номинального значения КВА трансформатора, к нему может быть подключена большая нагрузка. Большинство силовых нагрузок являются индуктивными и заставляют ток отставать от напряжения.

Дополнительная информация! Чтобы преодолеть сдвиг, адаптировано несколько методов коррекции коэффициента PF, помогающих нейтрализовать этот запаздывающий разрыв. Наиболее распространенным методом коррекции коэффициента PF является использование статических конденсаторов параллельно нагрузке. Они подают опережающий ток в систему, тем самым сокращая отставание. Конденсаторные батареи подключены параллельно к индуктивным нагрузкам. Измерить PF можно фазометром — измерительный прибор, определяющий угол сдвига фаз.

Главными параметрами электроприборов считаются: U, I и P. Потребляемую мощность всех устройств абонента учитывают при расчете электропроводки жилого помещения. В противном случае, при включении в сеть большого количества устройств, наступит перегрузка сети. Электропроводка не выдержит ток от электротехнических агрегатов, что приведет к плавлению изоляции, короткого замыкания в сети и воспламенению проводов.

применений статического электричества | HubPages

Все мы так или иначе сталкивались со статическим электричеством. Те неожиданные небольшие удары, которые мы получаем при прикосновении к дверной ручке или другому металлическому предмету, воздушные шары, которые прилипают к стене после того, как их растирают по голове, или сами волосы, выпрямляющиеся при приближении, — все это вызвано статическим электричеством.

Все они обычны в нашей повседневной жизни, и в большинстве случаев на них интересно смотреть, но есть ли какое-нибудь практическое применение статического электричества? или это просто забавное, но бесполезное электронное явление?

Что такое статическое электричество?

Статическое электричество генерируется, когда какой-либо материал получает или теряет электроны и становится положительно (когда он теряет электроны) или отрицательно заряжается (когда он получает электроны).Накопленные заряды называются статическим электричеством.

Это называется статическим, потому что заряды не перемещаются от места их образования, в отличие от электричества, используемого для питания электронных устройств, которое течет от одного полюса батареи или источника питания к другому. В большинстве случаев он возникает, когда два предмета соприкасаются или трются друг о друга.

Чтобы статический заряд оставался в объекте, он должен обладать высоким сопротивлением потоку электричества. Поэтому пластиковые шары и волосы остаются заряженными, они плохо проводят электричество.Другие материалы, такие как алюминий, могут иметь статический заряд, но он очень быстро рассеивается из-за своего низкого сопротивления потоку электронов.

Практическое использование статических зарядов

Способность противоположных зарядов в статическом электричестве используется при разработке приложений для него.

  • Удаление пыли: Существуют устройства, способные удалять пыль из воздуха, например очистители воздуха. Они используют статическое электричество, чтобы изменить заряды в частицах пыли, так что они прилипают к пластине или фильтру очистителя, который имеет заряд, противоположный заряду пыли (противоположные заряды притягиваются друг к другу).

    Этот эффект также используется в промышленных дымовых трубах для уменьшения загрязнения, которое они производят, хотя они работают в очень больших масштабах, эффект в основном такой же, как у домашних очистителей воздуха.

  • Фотокопия: Копировальные аппараты используют статическое электричество, чтобы чернила притягивались к тем областям, где нам нужно скопировать информацию. Он использует заряды для нанесения чернил только в тех областях, где копируемая бумага более темная (обычно это текст или другая информация), а не там, где бумага белая, этот процесс называется ксерографией.
  • Покраска автомобиля: Чтобы краска автомобиля была однородной и выдерживала высокие скорости и погодные условия, чтобы защитить металлический салон автомобиля, наносится статический заряд. Металлический корпус автомобиля погружен в вещество, которое заряжает его положительно, а краска заряжается отрицательно с помощью распылителя краски.

    Этот процесс обеспечивает равномерный слой краски, поскольку, когда в автомобиле достаточно отрицательной краски, лишняя краска будет отталкиваться краской, уже находящейся в автомобиле.

    Это также гарантирует, что краска не упадет, поскольку электрическое притяжение между краской и автомобилем сильнее, чем если бы она была просто распылена.

Во всех этих процессах используются электронные схемы для генерации статических зарядов и управления ими. Если вы интересуетесь электричеством и электроникой, посетите мой сайт электронных схем для начинающих, где вы найдете простые схемы, которые помогут вам начать работу. Когда вы научитесь достаточно, вы сможете создавать свои собственные практические схемы статического электричества для собственного использования!

Питание от статического электричества?

Многие люди задавались вопросом, можно ли использовать статическое электричество в качестве источника энергии для домов и промышленных предприятий.Несмотря на чрезвычайно высокое напряжение, которое может генерироваться статическим электричеством (десятки тысяч вольт по сравнению с 110 В обычной розетки), величина тока, которую он может генерировать, очень мала, от микроампер до нескольких миллиампер (Ампер — это единица электрического тока) и только на очень короткое время.

Молния может производить значительное количество энергии, но высокое напряжение, ток, температура и скорость разряда делают ее использование или хранение чрезвычайно трудным и неэффективным.

Хранение электроэнергии настолько неэффективно, что электростанции будут просто продавать дополнительную энергию по более низкой цене или оставлять ее неиспользованной и потерянной вместо того, чтобы хранить ее из-за стоимости, а также количество энергии, которое может быть сохранено, недостаточно значимо для компенсации расходы.

Электрический элемент — Простая английская Википедия, бесплатная энциклопедия

Электрический элемент — это устройство, используемое для выработки электричества или проведения химических реакций с помощью электричества.Батарея — это одна или несколько подключенных ячеек. Эта ячейка также известна как электрохимическая ячейка.

Простые электрические элементы были впервые разработаны в 1800-х годах. [1] Их также называют гальваническими ячейками , потому что их изобрел итальянский ученый Луиджи Гальвани.

Специальные химические реакции, происходящие внутри электрического элемента, приводят к окислению и восстановлению веществ внутри элемента. [1] Вырабатывает электрическую энергию.Нормальные батарейки так работают.

Некоторые электрические элементы производят электричество без использования химической энергии. Например, солнечные элементы производят электричество при воздействии солнечного света. [2]

Пластина из цинка и пластина из меди, погруженные в разбавленный раствор, содержащий кислоту или соль, являются примером ячейки, основанной на химической реакции. Раствор действует как электролит (электрический проводник). Когда две пластины подключены к измерителю тока с помощью провода, электрический ток будет проходить; это потому, что в этой химической реакции происходят процессы окисления и восстановления, в результате чего цинковая пластина превращается в отрицательный электрод, а медная пластина — в положительный, и поэтому электроны перетекают от цинка к меди.

Для некоторых химических реакций требуется большая энергия. Примером может служить разложение воды на водород и кислород. [3] Для этих реакций используется электрическая ячейка (или «электролитическая ячейка»). Это контейнер, в котором должна происходить химическая реакция с участием электродов. Химические вещества подвергаются воздействию электроэнергии, и реакция электролиза происходит внутри электрического элемента.

Два металлических предмета помещают в воду с небольшим количеством электролита, например соляной кислоты, серной кислоты, бикарбоната натрия или гидроксида натрия.Подается электрический ток, и из каждого электрода выходит газ. Некоторый зеленовато-коричневый цвет может также быть заметен при использовании железа.

Также может произойти химическая реакция, которая приведет к взрыву утюга и имеет большой радиус взрыва (рекомендуются защитные очки).

Simple English Wikipedia, бесплатная энциклопедия

Электромагнетизм — это исследование электромагнитной силы, одной из четырех фундаментальных сил природы. Электромагнитная сила толкает или притягивает все, что имеет электрический заряд, например электроны и протоны.Он включает электрическую силу, которая толкает все заряженные частицы, и магнитную силу, которая толкает только движущиеся заряды.

Электромагнитная сила возникает из так называемого электромагнитного поля. В физике поле — это то, как мы отслеживаем вещи, которые могут меняться в пространстве и времени. Это похоже на набор ярлыков для каждой точки пространства. Например, температура воздуха в комнате может быть описана полем, где метки представляют собой просто числа, показывающие, насколько жарко в этой точке в комнате.У нас могут быть и более сложные ярлыки. На карте скорости ветра метка может быть числом, показывающим, насколько сильный ветер, а также стрелкой, указывающей, в какую сторону он дует. Мы называем это векторным полем, потому что каждая метка является вектором — у нее есть направление (стрелка) и величина (сила).

Электрические и магнитные поля также являются полями. Вместо того, чтобы отслеживать температуру или скорость ветра, они говорят нам, насколько сильно заряженная частица будет чувствовать себя в этой точке пространства и в каком направлении она будет толкаться.Как и скорость ветра, электрические поля также являются векторными полями, поэтому их можно рисовать в виде стрелок. Стрелки указывают, в какую сторону толкнет положительная частица, например протон, если она находится в поле. Отрицательные частицы, такие как электроны, будут двигаться в направлении, противоположном стрелкам. В электрическом поле стрелки будут указывать от положительных частиц к отрицательным. Таким образом, протон в электрическом поле будет двигаться от другого протона или к электрону. Подобные заряды отталкиваются (отталкиваются друг от друга), в то время как противоположные заряды притягиваются (стягиваются).

Магнитные поля немного отличаются. Они толкают только движущиеся заряды, и они толкают больше зарядов, которые движутся быстрее. Но они совсем не выдвигают обвинения, которые сидят на месте. Однако изменяющееся магнитное поле может создавать электрическое поле, а электрическое поле может толкать любые заряды. Эта идея, называемая электромагнитной индукцией, используется для работы электрических генераторов, асинхронных двигателей и трансформаторов. Вместе электрическое и магнитное поля составляют электромагнитное поле.

До 1800 года люди думали, что электричество и магнетизм — две разные вещи. Однако это изменилось в 19 веке, когда такие ученые, как Ганс Кристиан Эрстед и Майкл Фарадей, доказали, что электричество и магнетизм действительно связаны. В 1820 году Эрстед обнаружил, что когда он включал и выключал электрический ток от батареи, он перемещал стрелку на ближайшем компасе. Когда он более внимательно изучил этот эффект, он обнаружил, что электрический ток создает магнитное поле.То есть, когда электрические заряды движутся, они могут создавать силу, которая давит на магниты. Эрстед обнаружил одну из первых связей между электричеством и магнетизмом.

Фарадей продолжил изучение этой связи, проводя тесты с петлями из проволоки и магнитами. Он обнаружил, что если он установит две проволочные петли и пропустит электричество только через одну из них, он сможет (на короткое время) произвести электрический ток и в другой петле. Фарадей также обнаружил, что он может производить ток, перемещая магнит через проволочную петлю или перемещая проволоку над магнитом.Фарадей показал, что магниты могут отталкивать движущиеся электрические заряды, а движущиеся магниты могут толкать неподвижные заряды. Это было похоже на то, что обнаружил Орстед, но наоборот.

в 1873 г. Джеймс Клерк Максвелл суммировал эти связи в своей теории «классического электромагнетизма», электричества и магнетизма вместе. Эта теория была основана на системе из четырех уравнений, называемых уравнениями Максвелла, и силе Лоренца. Уравнения Максвелла рассказали нам, как связать электричество и магнетизм.Они сказали, что неподвижные заряды могут давить на другие заряды, но движущиеся заряды могут создавать магнитные поля, которые толкают магниты. С другой стороны, неподвижные магниты могут толкать только движущиеся заряды, а движущиеся магниты могут толкать любые электрические заряды.

Более того, исследования Максвелла показали, что свет можно описать как рябь в электромагнитном поле. То есть свет движется как волна. Однако работа Максвелла не соответствовала классической механике, описанию сил и движения, первоначально разработанному Ньютоном.Уравнения Максвелла предсказывают, что свет всегда движется через пустое пространство с одинаковой скоростью. Это было проблемой, потому что в классической механике скорости являются «аддитивными» — если человек A в поезде, движущемся со скоростью X, бросает мяч со скоростью Y, то человек B на земле видит мяч, движущийся со скоростью X + Y . Согласно Максвеллу, если человек A включит фонарик, он увидит, как свет удаляется от него со скоростью c . Но человек B на земле должен также видеть свет, движущийся со скоростью c , а не c + X.Это привело к разработке Эйнштейном специальной теории относительности, которая объяснила, как скорость света может быть одинаковой для всех и почему классическая механика не работает для вещей, движущихся очень быстро.

Проблемы классического электромагнетизма [изменить | изменить источник]

Работа Альберта Эйнштейна с фотоэлектрическим эффектом и работа Макса Планка с излучением черного тела не работали с традиционным взглядом на свет как непрерывную волну. Эта проблема будет решена после развития квантовой механики в 1925 году.Это развитие привело к развитию квантовой электродинамики, которую разработали Ричард Фейнман и Джулиан Швингер. Квантовая электродинамика смогла подробно описать взаимодействия частиц.

Электромагнитное излучение — это и частица, и волна. Это потому, что иногда он действует как частица, а иногда как волна. Чтобы упростить задачу, мы можем представить электромагнитную волну как поток фотонов (символ γ).

Фотоны [изменить | изменить источник]

Фотон — это элементарная частица, а это означает, что он не может быть разбит на более мелкие частицы.Это частица, из которой состоит свет. Фотоны также составляют все другие типы электромагнитного излучения, такие как гамма-лучи, рентгеновские лучи и УФ-лучи. Идея фотонов была придумана Эйнштейном. Используя свою теорию фотоэлектрического эффекта, Эйнштейн сказал, что свет существует в небольших «пакетах» или пакетиках, которые он назвал фотонами.

Фотоны обладают энергией и импульсом. Когда два заряженных объекта толкают или притягивают друг друга, они посылают фотоны вперед и назад. Таким образом, фотоны переносят электромагнитную силу между заряженными объектами.Фотоны также известны в физике как частицы-посредники, потому что эти частицы часто передают сообщения между объектами. Фотоны посылают сообщения «подойди ближе» или «уйди» в зависимости от заряда объектов, на которые смотрят. Если в течение времени существует сила, то в это время происходит обмен фотонами.

Фундаментальные электромагнитные взаимодействия происходят между любыми двумя частицами, имеющими электрический заряд. Эти взаимодействия включают обмен или производство фотонов.Таким образом, фотоны являются частицами-носителями электромагнитных взаимодействий.

Электромагнитный

Урок аудирования на английском по электричеству

УРОК ЭЛЕКТРИЧЕСТВА

Попробуйте онлайн-викторину, чтение, аудирование и упражнения по грамматике, орфографии и словарному запасу для этого урока по Электричество . Нажмите на ссылки выше или просмотрите действия под этой статьей:


Ваш браузер не поддерживает этот аудиоплеер.

ПРОЧИТАТЬ

Электричество — одно из самых важных изобретений на свете.Это то, что питает Землю. Если бы не было электричества, мы вернулись бы в темные века. Мало кто останавливается и думает, насколько удивительно электричество. Одним щелчком переключателя можно включить практически все, что угодно. Подумайте, что было бы, если бы не было электричества. У нас не было бы ни телевизора, ни компьютеров, ни светофоров. Это как вернуться к жизни в пещерах. Конечно, у электричества есть несколько отрицательных моментов. Во-первых, это опасно. Тысячи людей умирают каждый год от поражения электрическим током или от электрического пожара.Во-вторых, это вредно для окружающей среды. Большая часть электроэнергии вырабатывается при сжигании угля, что создает парниковые газы.


МОЯ КНИГА


ПОСМОТРЕТЬ ОБРАЗЕЦ

Отправьте этот урок друзьям и учителям. Щелкните значок @ ниже.

ДЕЯТЕЛЬНОСТЬ

ЗАПОЛНИТЬ ПРОЗОР

Электричество ______________________ самых важных изобретений когда-либо.Это то, что питает Землю. ______________________ без электричества, мы вернемся в темные века. Мало кто останавливается и ______________________ электричество потрясающее. Одним щелчком переключателя ______________________ почти все. Думаю, ______________________ случится, если не будет электричества. У нас не было бы ни телевизора, ни компьютеров, ни светофоров. Это как ______________________ жить в пещерах. Конечно, есть несколько ______________________ об электричестве. Во-первых, это опасно.Тысячи ______________________ ежегодно в результате поражения электрическим током или электрического пожара. И во-вторых, это ______________________ окружающая среда. Большая часть электроэнергии поступает из ______________________, и это создает парниковые газы.

ИСПРАВИТЬ НАПИСАНИЕ

Электричество является одним из самых важных nnnitieovs когда-либо. Это то, что osewpr Земля. Если бы не было электричества, мы вернулись бы в темные века. Мало кто останавливается и задумывается, что такое анзимга электричество.Одним движением sctiwh вы можете запитать практически все. Подумайте, что было бы, если бы не было электричества. У нас не было бы ни телевизора, ни компьютеров, ни сигналов fctfair . Это все равно что вернуться к ivlgni в пещерах. Есть, конечно, несколько гаенивте пунктов об электричестве. Номер один, это ургенсода . Тысячи людей умирают каждый год от поражения электрическим током или от электрического пожара. Во-вторых, это вредно для окружающей среды.Большая часть электроэнергии вырабатывается из рупий на угля, и это создает теплицу и .

РАЗБИРАЙТЕ СЛОВА

Электричество — это важных изобретения, самое важное из когда-либо. Это то, что питает Землю. Если бы не было электричества, года назад, во тьме, было бы . Мало кто останавливается и думает, насколько удивительно электричество. Одним щелчком переключателя можно почти все, что угодно, привести в действие . Подумайте, что было бы электричества, если бы не было .У нас не было бы ни телевизора, ни компьютеров, ни светофоров. Это было бы как пещеры при проживании до . Есть, конечно, об отрицательных точках электричества, несколько . Во-первых, это опасно. Тысячи людей умирают каждый год в результате пожаров, вызванных электрическим током или пожаров. Во-вторых, это вредно для окружающей среды. Большая часть электроэнергии и сжигания поступает из угля , который создает парниковые газы.

ОБСУЖДЕНИЕ (Напишите свои вопросы)

ВОПРОСЫ УЧАЩИХСЯ А (Не показывайте их ученику Б)

1.

________________________________________________________

2.

________________________________________________________

3.

________________________________________________________

4.

________________________________________________________

5.

________________________________________________________

6.

________________________________________________________

ВОПРОСЫ СТУДЕНТА B (Не показывайте их студенту A)

1.

________________________________________________________

2.

________________________________________________________

3.

________________________________________________________

4.

________________________________________________________

5.

________________________________________________________

6.

________________________________________________________

ОБСЛЕДОВАНИЕ ЭЛЕКТРОЭНЕРГИИ СТУДЕНТОВ

Напишите в таблице пять ХОРОШИХ вопросов об электричестве. Делайте это парами. Каждый студент должен написать вопросы на собственном листе бумаги.

Когда вы закончите, опросите других студентов. Запишите их ответы.

СТУДЕНТ 1

_____________

СТУДЕНТ 2

_____________

СТУДЕНТ 3

_____________

Q.1.

Q.2.

Q.3.

Q.4.

Q.5.

  • Теперь вернитесь к своему первоначальному партнеру, поделитесь и расскажите о том, что вы узнали.Часто меняйте партнеров.
  • Сделайте мини-презентации для других групп о своих выводах.

ПИСЬМО

Напишите об электричестве за 10 минут. Покажите партнеру свою бумагу. Подправляйте работу друг друга.

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

ДОМАШНИЕ РАБОТЫ

1.Расширение словарного запаса: Выберите несколько слов из текста. Используйте словарь или поле поиска Google (или другую поисковую систему), чтобы создать больше ассоциаций / сочетаний каждого слова.

2. ИНФОРМАЦИЯ В ИНТЕРНЕТЕ: Поищите в Интернете дополнительную информацию об электричестве. Обсудите то, что вы обнаружите, со своим партнером (-ами) на следующем уроке.

3. СТАТЬЯ ЖУРНАЛА: Напишите статью в журнале об электричестве. Прочтите то, что вы написали своим одноклассникам на следующем уроке.Дайте друг другу отзывы о ваших статьях.

4. ПОСТЕР ЭЛЕКТРИЧЕСТВА Сделайте плакат об электричестве. Покажите это своим одноклассникам на следующем уроке. Дайте друг другу отзывы о ваших плакатах.

5. МОЙ УРОК ЭЛЕКТРИЧЕСТВА: Сделайте свой собственный урок английского по электричеству. Убедитесь, что есть чем заняться. Найдите хорошие занятия в Интернете. Когда закончите, научите класс / другую группу.

6.ОБМЕН ОНЛАЙН: Используйте свой блог, вики, страницу Facebook, страницу MySpace, поток Twitter, учетную запись Del-icio-us / StumbleUpon или любой другой инструмент социальных сетей, чтобы узнать мнение об электричестве. Поделитесь своими выводами с классом.

ОТВЕТОВ

Проверьте свои ответы в статье вверху этой страницы.



Справка по зарядке | Учебное пособие по электричеству и магнетизму

Заряд

Строительным блоком всех теорий электричества является заряд .Заряд — это фундаментальное свойство материи, как и масса. Как масса описывает взаимодействие материи и гравитационных полей, заряд описывает взаимодействие материи и электрических полей. Масса ведет ко всем концепциям механики, от сил до энергии и импульса, а заряд ведет заряд ко всем концепциям электромагнетизма. (Предназначен каламбур. Приносим свои извинения.)

Заряд обозначен как q и измеряется в кулонах (C). Кулон — это основная единица измерения электромагнетизма в системе СИ, так же как килограмм является основной единицей массы.

Заряд имеет три основных свойства, некоторые из которых являются общими с массой, а некоторые из них новые:

  • Полярность: Заряд бывает двух видов, которые мы называем положительным и отрицательным . Одинаковые заряды (два положительных или два отрицательных) будут отталкиваться, пытаясь оттолкнуться друг от друга, в то время как противоположные заряды (один отрицательный и один положительный) будут притягиваться, притягивая друг друга. Фраза «противоположности притягиваются» должно быть откуда-то, кроме Паулы Абдул, верно?
  • Сохранение заряда: Заряд не может быть создан или уничтожен, его можно только переместить с одного объекта на другой или замаскировать зарядами противоположной полярности.Это полностью аналогично сохранению массы.
  • Квантование заряда: Заряд поступает в виде дискретных маленьких пакетов, равных величине заряда электрона (иногда называемого элементарным зарядом или e ): 1,6 × 10 -19 C. Это потому что весь заряд во Вселенной исходит от электронов и протонов, которые имеют абсолютно равные и противоположные заряды, и нет такой вещи, как половина протона или четверть электрона, которые можно было бы добавить.* На самом базовом уровне масса также квантуется в единицах, равных массе протонов, нейтронов и электронов, но квантование заряда гораздо более очевидно в повседневной жизни.

Закон Кулона

Взаимодействие положительных и отрицательных зарядов задается законом Кулона . Для двух зарядов q 1 и q 2 , расстояние x друг от друга, сила, которую один оказывает на другой (вспомните Третий закон Ньютона), определяется по формуле:

k в этом уравнении — фундаментальная постоянная, часто называемая постоянной Кулона, равная.Обратите внимание, насколько это похоже на уравнение гравитационного притяжения между двумя массами:. И электрические, и гравитационные силы представляют собой законы «r-квадрата» (иногда называемые «обратным квадратом»), которые описывают притягивающие или отталкивающие взаимодействия объектов, которые не соприкасаются. Взаимодействие становится намного больше, чем ближе объекты.

Два одинаковых заряда (плюс-плюс или минус-минус) дадут положительный результат F e ; это знак, который представляет силу отталкивания.Два противоположных заряда (плюс-минус) сделают F e отрицательным, что является силой притяжения (hubba hubba). Если мы думаем о силе как о чем-то, что толкает, тогда имеет смысл, что положительная сила раздвигает частицы, а отрицательная сила сводит их вместе.

Это все хорошо для двух зарядов, но во Вселенной плавают больше, чем просто два заряда. Штопать. Однако не бойтесь, потому что заряд подчиняется принципу суперпозиции .Суперпозиция — это математический инструмент, который позволяет нам игнорировать все в проблеме, кроме одного элемента, решать проблему, а затем продолжать пыхтеть — игнорировать все, кроме следующего элемента, решать, игнорировать все, кроме следующего элемента, решать и т. Д. . Не обращайте внимания на все эти дополнительные расходы, как если бы вы тявкали на бигля за окном. Преуспевать. В конце мы складываем все маленькие решения вместе, и это наш общий ответ.

Например, представьте себе положительный заряд, расположенный между двумя отрицательными зарядами.

Отрицательный заряд слева вытягивает положительный заряд влево с силой, заданной законом Кулона. Но в то же время отрицательный заряд справа тянет положительный заряд вправо. Положительный заряд — это игра в электрическое перетягивание каната, поэтому результирующая сила, которую он ощущает, является суммой этих двух сил и будет зависеть от размера отрицательных зарядов и расстояния между ними и положительным зарядом.

Распространенные ошибки

В кулоновских силах действуют два направления.Один из них — это признак, вытекающий из закона Кулона, независимо от того, является ли сила притягивающей или отталкивающей. Но другой вопрос — в каком направлении на самом деле действует «притяжение» или «отталкивание», которое полностью зависит от геометрии конфигурации заряда.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *