ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА
Предлагаю схему зарядного устройства на импульсном стабилизаторе с возможностью установки тока и напряжения зарядки аккумулятора. Транзистор греется не сильно и радиатор нужно не большой благодаря ШИМ управлению. Одна из основных деталей это дроссель. От качества его изготовления зависит кпд схемы в целом. При использовании на токи до 10А сердечник можно взять от импульсного бп советского телека 3 усцт.
Для предотвращения намагничивания при больших токах нужно сделать воздушный зазор между половинками сердечника, подбором зазора и настраивают дроссель на максимальное кпд. Количество витков от 10 до 50 в зависимости от конструктивных особенностей. В моем случае использовал сердечник от импульсного блока питания для DVD проигрывателя, зазор порядка 2мм, количество витков — 15, максимальный ток до 3А, но я задействую только до 2А — больше просто не нужно. Использую для зарядки герметичных аккумуляторов на 6 и 12 вольт, а так же пальчиковых аккумуляторов. В принципе можно использовать для зарядки различных аккумуляторов. В зависимости от потребностей соответственно меняется и мощность силового трансформатора.
Печатная плата есть в архиве. Данное зарядное устройство обеспечивает регулировку тока заряда в пределах 1 …6 А и выходного напряжения 2…20 В, что идеально подходит для зарядки автомобильных аккумуляторов. Ключевой транзистор VT1, диод VD5 и выпрямительные диоды VD1-VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 300 см2. Транзистор после нескольких часов испытаний был чуть теплый, правда там поставил схему составного транзистора:
В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост. Сопротивление шунта в схеме желательно подогнать под требуемое.
Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2…100 кОм.Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В. Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Это зарядное устройство кроме своего прямого назначения может использоваться и как мощный лабораторный БП с регулируемым ограничением выходного тока.
Реальные испытания показали, что и как ЗУ и как БП устройство работает отлично. Главное — настроить правильно. Во время сборки случайно закоротил концы и ни чего не произошло — только дроссель издал свистящий звук, но схема осталась жива. Из чего можно сделать вывод, что она не боится кратковременных КЗ. Автор конструкции: Bor
Originally posted 2018-12-31 12:59:00. Republished by Blog Post Promoter
Схема автомобильного зарядного устройства
Как правило, во всех зарядных устройствах, регулировка тока зарядки осуществляется мощным тиристором или транзистором которые установлены на большом радиаторе и занимающие много места и не малые по весу. Соответственно из-за больших нагревов регулирующих элементов уменьшается коэффициент полезного действия и надежность всего узла. В автомобильном зарядном устройстве, которое предлагается в этой статье, эти недостатки устранены.
Схема автомобильного зарядного устройства работающего по принципу импульсного регулятора тока представлена на рисунке ниже.
Генератор импульсов, собранный на двух логических элемента 2И-НЕ (DD1.1 и DD1.2), является собственно блоком управления нашего зарядного. Резистором R3 регулируется скважность импульсов вырабатываемых данным блоком.
Элементы DD1.3 и DD1.4, включенные параллельно, выступают в роли буферного усилителя и инвертора выходного сигнала генератора. А полевой транзистор VT1 это регулятор тока.
При параметрах деталей, которые указаны на схеме, частота вырабатываемых импульсов будет составлять около 13 килогерц.
Принцип регулировки тока зарядки основан на изменении частоты генератора. При увеличении частоты скважность импульсов будет уменьшаться, соответственно будет уменьшаться и ток, протекающий через транзистор и аккумулятор, так как транзистор, будет меньше времени находится в открытом состоянии за период. При уменьшении частоты все наоборот.
В открытом состоянии сопротивление транзистора составляет примерно 0,017 Ом. Но так как он работает в режиме ключа на частоте около 13 килогерц, то при токе зарядки аккумулятора 5 ампер нагрев практически отсутствует. И тепловая мощность, рассеиваемая им в атмосферу, будет всего около 0.55 ватта. Соответственно площадь радиатора будет совсем небольшой, или же вообще можно обойтись без радиатора.
Для надежной работы зарядного устройства трансформатор Т1 должен быть мощностью ни менее 150 ватт, с вторичной обмоткой которая обеспечит 16-17 вольт на сглаживающем конденсаторе С1, и током ни менее 6 ампер. Но еще лучше будет, если использовать так называемый «электронный трансформатор», который применяется с галогенными лампами на 12 вольт. Это транзисторный преобразователь с трансформаторным выходом. Его преимуществом является малый размер и меньшее потребление энергии. Можно использовать широко распространенный трансформатор выпускаемый фирмой «Taschibra», мощностью 150 ватт и напряжением 12 вольт. Но для этого его необходимо немного переделать. Нужно домотать вторичную обмотку. Она у него состоит из 4-х параллельных проводов (жгута), каждый 1 мм, 9 витков. Дополняем вторичку еще тремя витками такого же жгута. Это можно сделать не разбирая ферритовый магнитопровод. После такой доработки, напряжение на конденсаторе C1 повысится до необходимых нам 17 вольт, при нагрузке 5,5 ампер.
Далее после трансформатора стоит диодный мост, собранный из диодов Шоттки. При этом VD1 это два диода в одном корпусе (можно и раздельно), VD2-VD3 дискретные. Все диоды устанавливаются на радиаторе через изолирующую прокладку с теплопроводной пастой.
Транзистор то же устанавливается на радиаторе из меди или алюминия размером 50х50х1 мм.
Амперметр взят от бытового магнитофона советского производства М476/2. Можно установить и любой другой, подобрав при этом шунт.
Конденсатор C1 желательно установить как можно большей емкости на напряжение не ниже 25 вольт. C2 примерно 10МкФ 16 вольт.
Микросхему К561ЛА7 можно заменить импортным аналогом, а транзистор на IRFZ44N.
Данное устройство можно использовать не только как зарядное, но и как регулятор мощности различных нагревательных и осветительных приборов или регулировки частоты вращения коллекторных двигателей. При этом выходное напряжение и ток зависят только от номиналов деталей схемы.
Еще одной особенностью этой схемы является возможность регулировать ток от нуля до максимального, в отличие от многих других схем.
Анекдот:
Внимательно вчитавшись в название «Калгон»,
я подумал, что оно идеально бы подошло для слабительного.
ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ
Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. Требования к его изготовлению описаны в предыдущей схеме. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В. Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки. Остальные схемы смотри далее: 1. Зарядные устройства для автомобильных аккумуляторов ( главная страница раздела зарядных устройств для автомобилей) 2. Зарядное устройство с автоматическим отключением от сети 3. Зарядное устройство с ключевым стабилизатором тока 4. Зарядное устройство с микросхемой TL494 5. Зарядное устройство с микросхемой TL494 и нормализатором напряжения шунта 6. Зарядное устройство с цифровой индикацией тока и напряжения. 7. Зарядное устройство с цифровой индикацией и повышенным выходным током до 20А 8. Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494 9. Зарядное устройство на двух тиристорах и с использованием микросхемы TL494 10. Зарядное устройство для кислотно-свинцовых необслуживаемых аккумуляторов ёмкостью 4 . .. 17А/час 11. Лабораторный блок питания 1,5 -30В, 0-5А + зарядное устройство на MOSFET транзисторе 12. Лабораторный блок питания + зарядное устройство с усилителем напряжения шунта 13. Лабораторный блок питания + зарядное устройство с узлом аварийной защиты 14. Зарядное устройство с периодическим контролем ЭДС аккумулятора ( главная страница раздела зарядных устройств) |
Уважаемые посетители! Все материалы сайта в случае их некоммерческого использования предоставляются бесплатно, хотя автор затрачивает достаточно большие средства на их обновление расширение и размещение. Если Вы хотите, чтобы автор отвечал на Ваши письма, обновлял и добавлял новые материалы — активней используйте контекстную рекламу, размещённую на страницах — для себя Вы узнаете много нового и полезного, а автору позволит частично компенсировать собственные затраты чтобы уделять Вам больше внимания ВНИМАНИЕ! Вам нужно разработать сложное электронное устройство? Тогда Вам сюда…
|
Схемы зарядных устройств для автомобильных аккумуляторов
Доброго времени суток всем автолюбителям! Если у вас есть свой автомобиль, значит, есть и аккумулятор. А если есть аккумулятор, значит, его нужно заряжать. Большинство автолюбителей используют заводские зарядные устройства. Но ведь его можно изготовить и самому. Для этого нужна схема зарядного устройства для автомобильного аккумулятора, инструмент и желание его сделать.
Содержание
Какие бывают зарядные для аккумуляторов
Как вы знаете, генератор заряжает АКБ на 85-90%. И чтобы не допустить потери емкости, его нужно периодически подзаряжать. Например, вы определяетесь, какой аккумулятор лучше купить, и выбор падает на кальциевый. В этом случае, стоит знать, что его рекомендуется заряжать каждые 2-3 месяца. А если этого не делать – через год батарея пойдет на свалку. Т.е. без зарядного устройства обойтись не получится.
Давайте разберемся, какие вообще существуют зарядные устройства, в чем их основные отличия, достоинства и недостатки.
По типу, они делятся на 2 большие группы:
- импульсные зарядные устройства;
- трансформаторные.
В свою очередь, они также могут быть разных видов. Давайте их рассмотрим.
Импульсные зарядные устройства
Принцип работы импульсного устройства заключается в зарядке аккумулятора на малых токах. Поэтому, отпадает необходимость использования большого трансформатора. А следовательно, они обладают компактными размерами и малым весом. Кроме того, многие модели оснащены функцией десульфатации восстанавливающей емкость аккумулятора.
Из недостатков, стоит отметить сложность ремонта. Принципиальная схема импульсных зарядных устройств, довольно сложная, поэтому без соответствующих знаний с ней будет сложно разобраться.
Трансформаторные устройства
В основе работы лежит трансформатор, который преобразовывает высокое напряжение в низкое. Отсюда большой вес и немалые габариты. Электрическая схема таких устройств, довольно простая, поэтому их легко ремонтировать и при желании можно собрать самостоятельно, воспользовавшись заводской схемой.
Основное различие этих приборов в реализации регулировки тока:
- тиристорная регулировка – сейчас используется редко, т. к. есть более совершенные аналоги;
- транзисторная – эта схема очень популярна, в ее основе лежит использование шим контроллеров;
- ступенчатая – регулировка напряжения делается механически, за счет добавления или уменьшения обмоток трансформатора.
Большое преимущество трансформаторных устройств в их простоте и надежности.
Десульфатирующее устройство
Большой плюс, когда зарядное устройство для автомобильного аккумулятора умеет работать в режиме десульфатации. Если вы не знаете – это разрушение сульфатов серной кислоты, которые образуются на свинцовых пластинах после глубоких разрядов АКБ.
Принцип работы десульфатирующего устройства довольно прост. В первый период, когда диоды открыты, аккумулятор заряжается, а во второй разряжается малым током. Например, ток заряда 10А, а для разряда – 1А. При желании, можно сделать его своими руками.
Для этого понадобятся:
- трансформатор мощностью от 200 Вт;
- реле для защиты АКБ от разрядки;
- диоды;
- переменный резистор для регулировки напряжения;
- амперметр;
- стабилитроны.
В этой схеме нужно предусмотреть радиаторы для охлаждения транзисторов.
Самодельные устройства
В интернете можно найти множество схем для изготовления зарядных для АКБ своими руками. Давайте сделаем небольшой обзор самых популярных и простых вариантов.
Популярные способы:
- самодельные зарядные из компьютерного блока питания. Один из самых простых вариантов. Для его изготовления потребуется минимум запчастей, т.к. он делается на базе готовой платы. На выходе можно получить регулируемое и мощное устройство;
- на диодах. Самая простая схема, включает диод, проводящий ток в одну сторону и обычную электролампу. Конечно, ее можно использовать лишь в экстренных случаях. Более совершенное устройство можно получить, используя понижающий трансформатор и выпрямительный диод на ток от 20 ампер;
- любительские устройства для аккумуляторов, основанные на использовании трансформаторов.
Браться за собственноручное изготовление зарядного устройства для аккумулятора, имеет смысл лишь в том случае, если у вас есть соответствующие знания. Иначе можно получить неожиданные результаты.
Если вы все же решите делать его самостоятельно, стоит учесть несколько деталей:
- прибор должен быть регулируемым;
- его электрическая схема должна включать стабилизатор зарядного тока. Она нужна для того, чтобы ограничивать подаваемый на АКБ ток по мере его зарядки;
- для мощного зарядного, необходимо предусмотреть систему принудительной вентиляции. Обычных радиаторов может не хватить.
Давайте рассмотрим несколько примеров изготовления альтернативы заводским приборам.
Зарядное из блока компьютерного блока питания
Один из доступных способов изготовления зарядного устройства своими руками – сделать его на базе компьютерного блока питания. Давайте разберемся, как его изготовить.
Понадобится:
- блок питания;
- переменный резистор на 33 и 68 кОм;
- предохранитель на 10А;
- два крокодила и провода для их подсоединения к плате;
- паяльник;
Мощность блока питания должна быть не меньше 150Вт, иначе он просто не сможет выдать достаточного напряжения для автомобильных аккумуляторов.
Подготовка
Самое главное, найти подходящий блок питания. Это определяется по шим-контроллеру, установленному на плате. Чтобы сделать самодельное зарядное устройство, подойдут:
- TL494;
- KA7500;
- TL495;
- MB3759;
- UTC51494;
Либо их аналоги. Кстати, в обозначении микросхемы важны цифры – буквы могут быть другими. Если шим-контроллер подходящий, нужно проверить исправность блока питания. Для этого нужно взять основной разъем блока и замкнуть зеленый провод с любым черным. Блок должен запуститься без компьютера.
Переделка платы
Когда вы достанете плату, первым делом нужно избавиться от всех лишних проводов. Легче всего их выпаять мощным паяльником. Для этого, нужно расплавлять припой с обратной стороны платы и аккуратно вытягивать проводки.
Максимальное напряжение, которое может выдать компьютерный блок питания – 12В. А этого для зарядки мало, т.к. нужно 14,5В. Поэтому потребуется отключить на плате защиту от повышения напряжения.
Для этого:
- находится 13, 14 и 15 ноги шим контроллера TL494;
- тестером определяется +5В, которые к ним подходят;
- дорожка перерезается.
После этого, нужно отпаять от первой ноги два резистора и впаять переменные резисторы на 33 и 68 кОм. К резистору на 33 кОм подключается регулятор.
Теперь нужно сделать выводы для подключения платы к АКБ. Для этого подойдет кабель с сечением в 2,5 мм2. Меньше брать не стоит. На плате находится вывод 12 В и земля, к которым нужно припаять эти провода. С другой стороны, к ним присоединяются крокодилы. Для защиты от замыкания, на плюсовую клемму желательно установить предохранитель на 10А.
После этого, блок собирается. Таким образом, можно своими руками сделать простейшее регулируемое зарядное для автомобильных батарей. Его можно усовершенствовать, добавив к электросхеме блок автоматического понижения выходящего тока и вольтметр.
Простое зарядное на диодах
Как уже писалось выше – заряжать аккумулятор таким способом, стоит лишь в экстренных случаях. Для изготовления понадобится:
- автомобильная лампа на 12В;
- зарядное от ноутбука – используется как диод;
- провода.
Последовательность подключения к батарее:
- плюс от зарядки подключается к плюсовой клемме напрямую;
- минус, подключается через лампу.
И все – такая вот схема простого зарядного устройства. Заряжаться аккумулятор будет 6-8 часов. При подключении, важно не перепутать плюс с минусом.
Таким образом, при желании, можно самому сделать полноценное зарядное для машины. Пусть даже и самое простое. Самое главное, что им можно зарядить свой аккумулятор. Но если вы сомневаетесь в своих силах – лучше приобрести заводской прибор. Тем более цена на них не такая уж и высокая.
Зарядное устройство для автомобильного аккумулятора с доставкой по Москве и России
Фильтр
Есть в наличии
Автоматическое зарядное устройство для заряда или хранения гелевых АКБ, ток — 1,2 А, напряжение — 13,6 — 14, 6 В
Производитель: Вымпел
Есть в наличии
Автоматическое зарядное устройство для заряда или хранения гелевых АКБ, ток — 1,2 А, напряжение — 6 В
Производитель: Вымпел
Есть в наличии
Зарядное устройство Сонар УЗ 201
Производитель: Сонар
Есть в наличии
Автоматическое зарядное устройство для заряда или хранения гелевых АКБ, ток — 1,2 А, ручной выбор напряжения — 13,6 — 14, 6 В
Производитель: Вымпел
Есть в наличии
Автоматическое зарядное устройство 12 В для заряда или хранения гелевых и кислотных АКБ, ток — 1,2 А, ручная регулировка тока и напряжения — 13,6 — 14, 6 В
Производитель: Вымпел
Есть в наличии
Полностью автоматическое зарядное устройство 5А, 12В для аккумуляторов емкостью до 75 А-часов
Производитель: Вымпел
Есть в наличии
Полностью автоматическое зарядное устройство 5А, 12В для аккумуляторов емкостью до 75 А-часов
Производитель: Вымпел
Есть в наличии
Емкость заряжаемого аккумулятора: 5 – 70 Ач
Производитель: AVS
Есть в наличии
Емкость заряжаемого аккумулятора: 5 – 60 Ач
Производитель: AVS
Есть в наличии
Автоматическое зарядное устройство с регулировкой тока до 6А, 12В индикация величины зарядного тока осуществляется амперметром.
Производитель: Вымпел
Есть в наличии
Производитель: Кедр
Есть в наличии
Зарядное устройство для аккумуляторов 6-12В Кулон-405
Производитель: Кулон
Хотите купить зарядное устройство для автомобильного аккумулятора по доступной цене, сделайте заказ на сайте!
Реализуемые нами зарядные устройства для аккумулятора авто AVS, Carku, Стек, Кедр, Орион/Вымпел предназначены для восстановления работоспособности автомобильного аккумулятора. Они обеспечивают быструю эффективную подзарядку. Для автолюбителя, много ездящего и нуждающегося в постоянно готовом к поездке автомобиле, наличие ЗУ является обязательным.
АКБ обладает свойством разряжаться в самый неподходящий момент на пустынных дорогах. Пуско-зарядное устройство способно выручить водителя в условиях, когда нужно быстро зарядить аккумулятор. Например, при его неожиданной разрядке и отсутствии возможности поставить новый, когда не получается «прикурить» у проезжающего «доброго самаритянина» на колесах и т.д.
Виды зарядных устройств
По характеру своей работы все зарядные устройства для аккумулятора авто можно разделить на следующие виды:
- Трансформаторные
- Импульсные
Трансформаторные устройства автолюбители держат у себя в гараже, так как они довольно массивные и имеют немалые габариты. Импульсные зарядники появились на отечественном рынке относительно недавно, но уже успели завоевать популярность у владельцев транспортных средств. Они отличаются компактными размерами, легкостью и высокой производительностью.
Принцип работы зарядного устройства
Любое автомобильное зарядное устройство представляет собой понижающий выпрямитель с возможностью выдавать на выходе стабилизированный сигнал. Это приспособление получает от сети 220 В и понижает его до необходимых показателей.
Так функционируют самые распространенные типы – трансформаторные. Импульсные зарядные устройства используют тот же принцип получения энергии, но преобразуют ее иначе. Для этого применяется трансформатор небольшого размера, работающий в импульсном режиме и находящийся под управлением и контролем процессора.
Как выбрать подходящий прибор
Основными при выборе зарядного устройства для автомобильного аккумулятора являются три следующих критерия:
- сила тока,
- напряжение,
- емкость батареи.
При подборе наиболее подходящего зарядного для автомобильного аккумулятора нужно учитывать, что оно должно быть мощнее имеющегося в наличии АКБ. Если приобрести слишком слабый агрегат, он не будет работать с мощным аккумулятором или же процесс затянется до бесконечности. Оптимальный выбор – зарядное устройство, равное по мощности аккумулятору или немного сильнее его. Такой прибор пригодится и в том случае, если владелец машины решит купить новый более мощный аккумулятор, который тоже потребуется со временем заряжать.
Автор: Сергей АвтоХол
ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА
Известно, что в процессе эксплуатации аккумуляторов их пластины могут сульфатироваться, что приводит к выходу аккумулятора из строя. Если производить заряд импульсным ассиметричным током, то возможно восстановление таких батарей и продление срока их службы, при этом токи заряда и разряда должны быть установлены 10 : 1. Мной изготовлено зарядное устройство, которое может работать в 2х режимах. Первый режим обеспечивает обычный заряд аккумуляторов постоянным током до 10 А. Величина зарядного тока устанавливается тиристорными регуляторами. Второй режим (Вк 1 выключен, Вк 2 включён) обеспечивает импульсный ток заряда 5А и ток разряда 0,5А. Работа схемы ЗУ во втором режиме (Вк1 – выключен; Вк2 – включен). Выключенный Вк1 обрывает цепь управления тиристора D3, при этом он остается постоянно закрыт. В работе остаётся один тиристор D2, который выпрямляет только один полупериод и выдает импульс заряда во время одного полупериода. Во время холостого второго полупериода происходит разряд аккумулятора через включённый Вк2. Нагрузкой служит лампочка накаливания 24В х 24 Вт или 26В х 24Вт (при напряжение на ней 12В она потребляет ток 0.5 А). Лампочка выведена наружу за корпус, чтобы не нагревать конструкцию. Значение зарядного тока устанавливается регулятором R3 по амперметру. Учитывая, что при зарядке батареи часть тока протекает через нагрузку Л1(10%). То показания амперметра должны соответствовать 1,8А (для импульсного зарядного тока 5А). так как амперметр имеет инертность и показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
Форум по зарядным устройствам
Форум по обсуждению материала ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА
Тиристорные зарядные устройства для автомобильных аккумуляторов схемы
Главная » Разное » Тиристорные зарядные устройства для автомобильных аккумуляторов схемы
Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные
на тиристорах, симисторах и мощных полевых транзисторах. Рис.1 Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ,
получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора. Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.
Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока
производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы
C1-C4. В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см. Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН,
МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой
техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с
пределом измерения 30 А. Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением. Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства. Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные
устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис. 3. Вот что пишет автор:
Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником
питания для мощного низковольтного паяльника, вулканизатора, переносной лампы. Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего
трансформатора Т1 через диодный мост VDI…VD4. Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП. Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном
(двухполярном) аналоге тиристора — симисторе.
Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть
использовано для зарядки различных аккумуляторов на напряжение 12В. Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт. Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5). Рис.5 Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора. В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44. Рис.6
Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6)
и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий
элемент — полевой транзистор VT1. Рис.7
Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных
электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми
параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет
максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его
замена транзистором IRFZ44N.
|
vpayaem.ru
Простое, тиристорное зарядное устройство для авто АКБ
Всем привет, ранее я показывал схему мощного, тиристорного, зарядного устройства для автомобильных аккумуляторов, а простая схема, хотя и обладала высокой надёжностью, но была лишена систем защит, наподобие защиты от обратной полярности и короткого замыкания.
Сегодня речь пойдет о тиристорном, зарядном устройстве, но в ней уже имеются вышеупомянутые системы и защиты, таким образом представленная схема практически не убиваемая, одним словом надежная, как автомат Калашникова.
Вообще, зарядные устройства бывают линейными и импульсными.
Линейные, как правило, обладают малым кпд, поэтому силовой элемент — транзистор нуждается в большом радиаторе и дополнительном, активном охлаждении.
Если нужно зарядное устройство на большой ток, либо пуско-зарядное, то нужно смотреть в сторону импульсных схем. Импульсные, зарядные устройства можно разделить на 2 группы, схемы с шим-регулировкой тока заряда и фаза-импульсным способом.
Первый вариант, конечно же хорош, там регулировка мощности производится шим-сигналом, чем больше длительность импульсов, которые управляют силовым ключом, тем больше ток и наоборот.
Но подобные схемы сложны, поскольку в них должен иметься шим-контроллер, узел управления силовыми ключами и мощная выходная часть, также немаловажным фактором является стоимость комплектующих, хорошие, оригинальные, силовые транзисторы стоят дорого, то же самое можно сказать о силовых диодах, которые имеются в таких источниках питания.
Чем мощнее схема, тем больше и затраты, а если планируете собрать пуско-зарядное устройство с большим выходным током, то она здорово ударит по карману, взамен такие схемы могут дать возможность полной регулировки или стабилизации, как выходного напряжения, так и тока, что даст возможность построить универсальные зарядки абсолютно для любых аккумуляторов.
КПД у импульсных схем высокая, за счёт ключевого режима работы силового ключа, он либо открыт, либо закрыт.
Фаза-импульсные регуляторы также являются разновидностью импульсных регуляторов, тот же принцип только управление силового элемента производится низшим сигналом, а путем изменения частоты управляющих импульсов. Такой способ регулировки применим к тиристорам и симисторам, метод регулировки мощности заключается в обрезании начального, синусоидального сигнала.
Фаза-импульсные регуляторы мощности, обладают предельно высокой надежностью, если всё сделано правильно, тут нет шим контроллера, на его месте простой, релаксационный генератор способный вырабатывать управляющие импульсы с регулировкой частоты.
Такие генераторы очень просты и могут быть собраны из подручных компонентов, достоинством таких зарядных устройств являются высокое кпд и то, что они «резиновые», поставили более мощный трансформатор, тиристоры и ВСЁ, мощность схемы может быть любой.
Теперь, что касается нашей схемы…
Это схема промышленного, зарядного устройства Барс-8а,
ничего я не менял, только перевёл схему на импортную, элементную базу, с вашего разрешения будем рассматривать именно её.
Обратите внимание на толстые линии, это силовые, сильноточные цепи, провод для этих линий нужен с большим сечением в зависимости от расчетного тока. В схеме допускается разброс номиналов компонентов на 20%, на работу это особо не повлияет.
Несмотря на то, что вся вторичная цепь низковольтная, напряжение там безопасное. Питается зарядка от сетевого напряжения, поэтому соблюдайте бдительность и правила безопасности при работе с сетевым напряжением.
Первый запуск схемы, осуществляется через страховочную, сетевую лампу накаливания на 40-60 ватт, которая подключается на место предохранителя.
Схема управления собрана на компактной, печатной плате, её можете скачать в конце статьи.
В схеме имеем простой, релаксационный генератор, построенный на двух транзисторах, ещё один транзистор является усилительным. Помимо этих, в схеме имеем ещё два транзистора.
Давайте разберёмся, как это работает…
При подключении устройства в сети ничего не произойдёт, схема не будет работать пока на выходе не подключим заряжаемый аккумулятор. При подключении аккумулятора масса или минус от него поступит на эмиттер первого транзистора, а на базу через светодиод и ограничительный резистор, поступит положительное напряжение, что приведёт к отпиранию транзистора.
В этом случае напряжение появится и на делителе, который состоит из переменного и постоянного резистора, вращением переменного резистора у нас появляется возможность плавно открывать или закрывать второй транзистор, чем сильнее приоткрыт этот транзистор, тем быстрее будет заряжаться конденсатор, именно от скорости заряда этого конденсатора зависит частота импульсов вырабатываемых релаксационным генератором.
Таким образом вращение переменного резистора приводит к изменению частоты импульсов, эти импульсы в свою очередь через диоды поступают на управляющие выводы мощных, силовых тиристоров.
В данной части схемы построен мостовой выпрямитель,
только регулируемый, так как пара диодов выпрямителя заменены тиристорами, остальные два диода обычные, выпрямительные.
Выходное напряжение с этого зарядного устройства — пульсирующие, одни говорят, что это даже хорошо для аккумуляторов и способствует их восстановлению. Коротких замыканий устройство не боится, сугубо по той причине, что без аккумулятора оно не будет включаться вообще, если же аккумулятор включен неправильно, то есть «переполюсовка», то светодиод окажется подключенной анодом к массе и питание попросту не поступит на схему, если всё подключено правильно светодиод светится.
Заработает ли устройство, если заряжаемый аккумулятор сильно разряжен? Заработает, для запуска схемы достаточно и 6 вольт, так что дохлый аккумулятор не помеха.
Теперь о комплектующих.
Все диоды примененные в схеме выбираются с током 1-1. 5 ампера, кроме конечно же силовых, но о них поговорим попозже. Первые 4 транзистора можно любые, маломощные с напряжением коллектор-эмиттер желательно от 40 вольт, хотя первый транзистор я поставил более мощный, но в этом нет необходимости.
Управляющий транзистор в ходе работы будет нагреваться, поэтому его необходимо установить на небольшой теплоотвод.
Указанный резистор, необходим с мощностью 1-2 ватта, в ходе работы будет нагреваться, у меня стоит 2-х ватный.
Силовая часть состоит из 2-х диодов и 2-х тиристоров, тут я отдал предпочтение советским компонентам.
Диоды, вот такие ДЧ135-50, в моём случае военная приёмка с индексом 2Ч, идеальный вариант для этих целей, они на 50 ампер.
Корпус у этих диодов отлично отводит тепло и по идее они могут работать на более больших токах.
Тиристоры 2Т142-80 на 80 ампер, также военная приёмка. Напряжение диодов и тиристоров в принципе можно от 40 вольт, но у меня стоят с многократным запасом, тиристоры на 700 вольт, диоды на 600 и в этом нет необходимости, просто такие компоненты были в наличии.
Как вы могли заметить несмотря на компактные размеры и тиристоры, и диоды, очень мощные — это довольно необычно, поскольку мощные, советские радиокомпоненты, как правило, очень громоздкие.
Введите электронную почту и получайте письма с новыми поделками.
По поводу охлаждения.
Диоды должны быть установлены на массивный радиатор, а вот для тиристоров радиатор можно поменьше, так как они работают в импульсном режиме, хотя всё зависит от того на какой ток рассчитана ваша схема и какой в целом трансформатор.
Да, и еще не забываем мазать термопасту.
Резисторы на 100 Ом установлены не на плате управления, а припаяны непосредственно на тиристорах.
Силовой трансформатор необходим с напряжением вторичной обмотке не менее 18-20 вольт, этого хватит для зарядки любых автомобильных 12-вольтовых аккумуляторов.
Ток обмотки уже будет зависеть от ваших нужд, 6 ампер хватит для зарядки аккумуляторов с номинальной емкостью 60 ампер-часов, но схема с таким раскладом может обеспечить выходной ток в десятки ампер и всё зависит от трансформатора и силового выпрямителя. Получить можно и сотню ампер, и даже больше, всё зависит от вашей фантазии.
Регулировка зарядного тока очень плавная.
По поводу недостатков, то что схема надежная вы поняли, но она не имеет стабилизации, как и большинство схем на основе тиристора, то есть скачки и перепады сетевого напряжения приведут к увеличению или уменьшению выходного напряжения, поэтому устройство нуждается в некотором зрительном контроле.
Амперметр и вольтметр, вам покажут значение тока заряда и напряжения на аккумуляторе, и определиться нужно именно исходя из показаний приборов, например — если ток заряда 0, но напряжение на аккумуляторе меньше того значения, которое должно быть в полностью заряженном состоянии, то увеличиваем ток вращением регулятора.
Безусловно я согласен, что это неудобно, но поверьте на практике вам не придётся очень часто регулировать ток, если вы заряжаете один и тот же аккумулятор.
Архив к статье скачать…
Автор; АКА Касьян
xn--100—j4dau4ec0ao.xn--p1ai
Простое тиристорное зарядное устройство на КУ202 | РадиоДом
Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.
Зарядный ток по форме близок к импульсному, кой, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 С до + 35 С.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.
Все радиокомпоненты устройства отечественные, но возможна их замена на аналогичные зарубежные.
Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 ампер. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохраннтель F1 — плавкий, но удобно применять и сетевой автомат на 10 ампер либо автомобильный биметаллический на такой же ток.
Диоды VD1…VP4 могут быть любыми на прямой ток 10 ампер и обратное напряжение не менее 50 вольт (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор ставят на алюминиевые радиаторы, площадью охлаждения от 120 кв.см. Для улучшения теплового контакта устройств с радиаторами обязательно смазать теплопроводные пасты.
Тиристор КУ202В заменим на КУ202Г — КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.
В устройстве применен готовый сетевой понижающий трансформатор соответствующей мощности с напряжением вторичной обмотки от 18 до 22 вольт.
Если у трансформатора напряжение на вторичной обмотке выше чем 18 вольт, резистор R5 желательно сменить другим, наибольшего сопротивления (к примеру, при 24 — 26 вольт сопротивление резистора соответственно увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах.
При напряжении вторичной обмотки 28 х 36 вольт можно вообще отказаться от выпрямителя — его роль станет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен — подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е).
Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 ампер.
radiohome.ru
Схема и описание тиристорного зарядного устройства для автомобильных аккумуляторов
Схема и описание простого самодельного зарядного устройства на тиристоре для зарядки автомобильных аккумуляторов.
Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.
Это зарядное устройство на тиристоре позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С. Схема устройства показана на рис. 1.
Нажмите на картинку для просмотра.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мостVD1 + VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.
Тиристорное зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).
К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.
Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.
Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.
Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см2. Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.
В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26 В сопротивление резистора следует увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.
При напряжении вторичной обмотки 28…36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).
Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.
Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.
Рекомендуем посмотреть:
Тиристорное зарядное устройство
Схема автоматического ЗУ на тиристорах и микросхеме
kulbakimaster. ru
Предлагаю вашему вниманию простое зарядное устройство с использованием тиристора, которое под силам собрать своими рукамидаже начинающему радиолюбителю. Его можно использовать как самостоятельное устройство, так и в дополнение к существующему зарядному устройству, так как в схеме реализовано несколько типов защит. По желанию, на выходе схемы к АКБ, можно добавить вольтметр и амперметр. Вольтметр подключается параллельно нагрузке, а амперметр последовательно, через линию «+». Диодный мост рекомендую выполнить на диодах Д242
Транзистор КТ 815 возможно заменить на отечественный аналог: КТ8272, КТ961, либо на его зарубежный аналог: BD135, BD137, BD139, TIP29A Параметры КТ815 транзистора
Основные технические характеристики диодов Д242, Д242А, Д242Б:
Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, h40T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А. Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить. Параметры тиристора КУ 202
|
www.vk-sto.by
Простое зарядное устройство — Сообщество «Кулибин Club» на DRIVE2
Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно «бьёт» по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства показана на фото ниже.
Принципиальная схема устройства
Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1, VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.
Печатная плата
Монтажная плата
Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали:
С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).
Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).
Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.
Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.
Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.
Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.
Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.
Больше фото можно посмотреть в моём блоге тут:)
www.drive2.ru
Зарядное устройство с регулировкой тока на тиристорах. Простое тиристорное зарядное устройство
Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле
где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.
Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.
В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.
В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.
Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).
Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.
Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.
Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.
Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.
На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.
Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.
Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:
В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.
Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).
Примечание:
Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.
Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.
В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).
Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:
Примечание:
Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.
В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.
Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а регулировочные характеристики выше, чем у предыдущей схемы.
Предлагаемое устройство имеет стабильную плавную регулировку действующего значения выходного тока в пределах 0,1 … 6А, что позволяет заряжать любые аккумуляторы, а не только автомобильные. При зарядке маломощных аккумуляторов желательно последовательно в цепь включить балластный резистор сопротивлением несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных регуляторов. С целью уменьшения пикового значения тока зарядки в таких схемах обычно применяют силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт и мягкой нагрузочной характеристикой, что позволяет обойтись без дополнительного балластного сопротивления или дросселя. Особенностью предлагаемой схемы является необычное использование широко распространённой микросхемы TL494 (KIA494, К1114УЕ4). Задающий генератор микросхемы работает на низкой частоте и синхронизирован с полуволнами сетевого напряжения с помощью узла на оптроне U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока. Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй используется для ограничения выходного напряжения, что позволяет отключить зарядный ток по достижению на аккумуляторе напряжения полной зарядки (для автомобильных аккумуляторов Uмах = 14,8 В) . На ОУ DA2 собран узел усилителя напряжения шунта для возможности регулирования тока зарядки. При использовании шунта R14 с другим сопротивлением потребуется подбор резистора R15. Сопротивление долж
advsk.ru
Ремонт и Доработка» на DRIVE2
С первой частью можно ознакомиться тут -> Самодельное зарядное устройство в гараж (Ч.1)
Значит плата у нас уже готовая.
Много кто предложил другие способы изготовления плат.
Ребят! Я только за! Но не все же смогут использовать неизвестный ему софт, и что бы делать ЛУТом или фоторезистом нужно набить руку.
Тут каждый сам может делать плату как хочет, я не навязываю предложенный мною метод, просто мне он показался самым простым.
Теперь нам нужно согласно схемы найти резисторы, транзисторы и диод.
Начнем с резисторов. Можно купить новые, можно выпаять старые, из нашего найденного телевизора.
Вот такие они:
Находим необходимые номиналы, согласно схемы.
Нашли? Продолжаем!
Теперь Из этого же телевизора нужно выпаять 2 транзистора —
КТ315 и КТ361
И еще нужен диод КД105 или же 1N4007
Потом втыкаем детали у плату, запаиваем все припоем с канифолью.
Теперь нужно еще подключить к плате тиристор КУ202 и переменный резистор от 15 до 30 кОм.
Ах да. Забыл еще про конденсатор.
Ставим от 0,5 до 1,5 мкф. (Его видно на фото ниже, синий такой, тип К73-17, можно ставить любой)
Ну я думаю, это не будет очень сложно.
Включаем, проверяем, все ли у нас работает.
Работает — радуемся, не работает — разбираемся что мы напутали.
Так же нужно поставить предохранители!
После сборки схема работает сразу, никаких настроек не требует.
У меня вот так собрано. Я конечно не пикассо, но работает))
Вот такой самодельный шунт. Но Вам я рекомендую купить сразу готовый амперметр из шунтом.
Диодный мост. Кстати диодный мост смонтирован на куске гетинакса, что бы не было контакта с корпусом. Тиристор тоже нужно изолировать от корпуса!
Я еще собрал защиту от переполюсовки на реле жигулевском, но у меня схемы нет, да и рисовать мне ее лень, но если загуглить, то сразу можно найти кучу схем))
Всем желаю удачи в сборке! Ровных дорого и заряженных аккумуляторов! 🙂
P.S. Видео обзор зарядного устройства!
www.drive2.ru
Известно, что в процессе эксплуатации аккумуляторов их пластины могут сульфатироваться, что приводит к выходу аккумулятора из строя. Если производить заряд импульсным ассиметричным током, то возможно восстановление таких батарей и продление срока их службы, при этом токи заряда и разряда должны быть установлены 10 : 1. Мной изготовлено зарядное устройство, которое может работать в 2х режимах. Первый режим обеспечивает обычный заряд аккумуляторов постоянным током до 10 А. Величина зарядного тока устанавливается тиристорными регуляторами. Второй режим (Вк 1 выключен, Вк 2 включён) обеспечивает импульсный ток заряда 5А и ток разряда 0,5А. Работа схемы ЗУ во втором режиме (Вк1 – выключен; Вк2 – включен). Выключенный Вк1 обрывает цепь управления тиристора D3, при этом он остается постоянно закрыт. В работе остаётся один тиристор D2, который выпрямляет только один полупериод и выдает импульс заряда во время одного полупериода. Во время холостого второго полупериода происходит разряд аккумулятора через включённый Вк2. Нагрузкой служит лампочка накаливания 24В х 24 Вт или 26В х 24Вт (при напряжение на ней 12В она потребляет ток 0.5 А). Лампочка выведена наружу за корпус, чтобы не нагревать конструкцию. Значение зарядного тока устанавливается регулятором R3 по амперметру. Учитывая, что при зарядке батареи часть тока протекает через нагрузку Л1(10%). То показания амперметра должны соответствовать 1,8А (для импульсного зарядного тока 5А). так как амперметр имеет инертность и показывает усредненное значение тока за период времени, а заряд производится в течение половины периода. Форум по зарядным устройствам Обсудить статью ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА |
radioskot.ru
Схемы зарядных устройств для автомобильного аккумулятора: сборка своими руками
Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.
Немного теории об аккумуляторах
Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.
Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.
Как узнать состояние батареи
Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.
Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:
- 12.6…12.7 В — полностью заряжена;
- 12.3…12.4 В — 75%;
- 12.0…12.1 В — 50%;
- 11.8…11.9 В — 25%;
- 11.6…11.7 В — разряжена;
- ниже 11.6 В — глубокий разряд.
Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.
Правильная зарядка
Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:
- Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
- Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.
Самодельные зарядки для АКБ
Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.
Простое устройство на 6 и 12 В
Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.
Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.
К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.
В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.
Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.
Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.
С плавной регулировкой тока
По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.
Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.
Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.
Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.
Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.
Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.
Из компьютерного блока питания
Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.
Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.
Пошагово необходимые для доработки операции будут выглядеть следующим образом:
- Откусить все провода шин питания, за исключением жёлтых и чёрных.
- Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
- Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
- Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
- Навесным монтажом собрать схему, приведённую на рисунке выше.
Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.
В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.
Что необходимо знать при зарядке АКБ
Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:
- Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
- В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
- Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
- Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
- Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
- Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.
Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.
pochini.guru
Три простые схемы регулятора тока для зарядных устройств
Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.
Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.
В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.
Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.
Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.
Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.
Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.
Постараюсь пояснить принцип работы схем максимально простыми словами…
Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.
Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.
Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.
Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.
Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.
Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.
Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.
Выход операционного усилителя управляется мощным полевым транзистором.
То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.
Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.
Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.
Введите электронную почту и получайте письма с новыми поделками.
Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.
Взамен будет нагреваться транзистор и от этого никуда не денешься.
Архив к статье; скачать…
Автор; АКА Касьян
xn--100—j4dau4ec0ao.xn--p1ai
Зарядка аккумулятора
% PDF-1.4 % 1 0 obj> поток application / pdfЗарядка аккумулятора
Учебное пособие по зарядке аккумулятора | Зарядные устройства.com
Текущая технология зарядки аккумуляторов основана на использовании микропроцессоров (компьютерных чипов) для подзарядка с использованием 3-ступенчатой (или 2-х или 4-х ступенчатой) регулируемой зарядки. Это «умные» зарядные устройства «, а качественные устройства обычно не продаются в дисконтных магазинах. Стадиями или этапами зарядки свинцово-кислотных аккумуляторов являются объемная, абсорбционная и плавающая. Квалификация или уравнивание иногда считаются еще одним этапом. 2 этап блок будет иметь объемную и плавающую ступени.Важно использовать батареи производителя. рекомендации по зарядке и напряжениям, или качественный микропроцессор управляемое зарядное устройство для поддержания емкости аккумулятора и срока его службы.
«Умные зарядные устройства» созданы с учетом современной философии зарядки. а также получать информацию от аккумулятора, чтобы обеспечить максимальный заряд с минимальное наблюдение. Для некоторых гелевых аккумуляторов и аккумуляторов AGM могут потребоваться специальные настройки. или зарядные устройства.Наши устройства выбраны по их совместимости с типами батарей, которые они указывать. Гелевые батареи обычно требуют определенного профиля заряда, а гелевые батареи требуется специальное или выбираемое гелем или подходящее гелеобразное зарядное устройство. Пиковая зарядка напряжение для гелевых аккумуляторов составляет 14,1 или 14,4 вольт, что ниже, чем у влажных или AGM. Тип батареи необходим для полной зарядки. Превышение этого напряжения в гелевой батарее может вызвать пузыри в геле электролита и необратимое повреждение.
Большинство производителей аккумуляторов рекомендуют устанавливать зарядное устройство примерно на 25% емкости аккумулятора. емкость (ah = емкость в ампер-часах). Таким образом, 100-амперная батарея потребует около 25 ампер. зарядное устройство (или меньше). Для сокращения времени зарядки можно использовать зарядные устройства большего размера, но уменьшить срок службы батареи. Меньшие зарядные устройства подходят для длительного плавания, например а 1 или «умное зарядное устройство» на 2 ампера может использоваться для обслуживания батареи между циклами более высокого тока. использовать.Некоторые батареи указывают 10% емкости (0,1 X C) в качестве скорости заряда, а в то время как это ничего не помешает, хорошее микропроцессорное зарядное устройство соответствующей зарядки профиль должен быть в порядке до 25% ставки. Вы разговариваете с разными инженерами, даже в одна и та же компания, вы получите разные ответы.
Трехступенчатая зарядка аккумулятора
Ступень BULK включает около 80% перезарядки, при этом зарядный ток остается постоянным (в зарядном устройстве постоянного тока), и напряжение увеличивается.Правильно размер зарядного устройства даст батарее столько тока, сколько она может принять до зарядного устройства емкость (25% емкости аккумулятора в ампер-часах), и не поднимать мокрый аккумулятор 125 F, или аккумулятор AGM или GEL (регулируемый клапаном) более 100 F.
Ступень ПОГЛОЩЕНИЕ (примерно оставшиеся 20%) имеет зарядное устройство. удерживая напряжение на уровне напряжения поглощения зарядного устройства (от 14,1 до 14,8 В постоянного тока). VDC, в зависимости от уставок зарядного устройства) и уменьшая ток до тех пор, пока аккумулятор не полностью заряжен.Некоторые производители зарядных устройств называют эту стадию абсорбции стадия уравнивания. Мы не согласны с таким использованием термина. Если батарея не удерживают заряд, или ток не падает после ожидаемого времени перезарядки, батарея может иметь постоянную сульфатацию.
Ступень FLOAT — это место, где напряжение заряда снижается до 13,0 В постоянного тока и 13,8 В постоянного тока и поддерживается постоянным, в то время как ток снижается до менее 1% заряда батареи емкость.Этот режим можно использовать для поддержания полностью заряженного аккумулятора на неопределенный срок.
Время перезарядки можно приблизительно определить, разделив заменяемые ампер-часы на 90%. номинальной мощности зарядного устройства. Например, аккумулятор на 100 ампер-час с Разряд 10% потребует замены 10 ампер. Используя зарядное устройство на 5 ампер, у нас есть 10 ампер часов, разделенных на 90% от 5 ампер (0,9×5) ампер = расчетное время зарядки 2,22 часа. А глубоко разряженный аккумулятор отклоняется от этой формулы, требуя больше времени на каждый ампер подлежит замене.
Рекомендации по частоте подзарядки варьируются от эксперта к эксперту. Оказалось, что глубина разряда влияет на срок службы батареи больше, чем частота подзарядки. Для например, подзарядка, когда оборудование не будет использоваться какое-то время (прием пищи перерыв или что-то еще), может поддерживать среднюю глубину разряда выше 50% для услуги день. В основном это относится к аккумуляторным приложениям, где средняя глубина разряд падает ниже 50% за день, а аккумулятор можно полностью зарядить один раз в течение 24 часов.
Выравнивание
Выравнивание — это, по сути, управляемая перезарядка. Некоторые производители зарядных устройств назовите пиковое напряжение, которое зарядное устройство достигает в конце НАСОСНОГО режима (поглощение напряжение) выравнивающее напряжение, но технически это не так. Большая влажность (залитые) батареи иногда выигрывают от этой процедуры, особенно физически высокие батареи. Электролит в мокрой батарее со временем может расслаиваться, если не ездить на велосипеде изредка.При выравнивании напряжение поднимается выше типичного. пиковое зарядное напряжение (от 15 до 16 вольт в 12-вольтовой системе) в газе этап и проводится в течение фиксированного (но ограниченного) периода. Это разжигает химию в аккумулятор целиком, «уравняв» силу электролита и сбив любой рыхлый сульфат, который может находиться на пластинах аккумулятора.
Конструкция аккумуляторов AGM и гелевых практически исключает расслоение, и почти все производители этого типа не рекомендуют его (не советуют).Некоторые производители (особенно Concorde) указывают процедуру, но напряжение и время не учитываются. важно, чтобы избежать повреждения аккумулятора.
Тестирование батарей
Тестирование батареи можно провести несколькими способами. Самый популярный включает в себя измерение удельного веса и напряжения аккумулятора. Удельный вес относится к влажным ячейкам с съемные колпачки, дающие доступ к электролиту. Для измерения удельного веса купите ареометр с температурной компенсацией в магазине автозапчастей или в магазине инструментов.К Измерьте напряжение, используйте цифровой вольтметр в настройке напряжения постоянного тока. Поверхность Перед испытанием необходимо снять заряд со только что заряженной батареи. 12 часов истечение срока после зарядки квалифицируется, или вы можете удалить поверхностный заряд с помощью нагрузки (20 ампер в течение 3 с лишним минут).
Состояние зарядного напряжения Удельный вес 12 В 6 В 100% 12.7 6,3 1,265 75% 12,4 6,2 1,225 50% 12,2 6,1 1,190 25% 12,0 6,0 1,155 Разряжено 11,9 6,0 1,120
Нагрузочное тестирование — еще один метод тестирования батареи. Нагрузочное тестирование удаляет усилители из аккумулятор (аналогично запуску двигателя).Некоторые производители аккумуляторов маркируют свои аккумулятор с амперной нагрузкой для тестирования. Это число обычно составляет 1/2 рейтинга CCA. Например, батарея на 500 CCA будет тестировать под нагрузкой 250 ампер в течение 15 секунд. Нагрузка Тест может быть выполнен только в том случае, если аккумулятор полностью или почти полностью заряжен. Некоторые электронные Тестеры нагрузки применяют нагрузку 100 А в течение 10 секунд, а затем отображают напряжение батареи. Это число сравнивается с диаграммой на тестере на основе рейтинга CCA для определения состояние батареи.
Сульфатация батарей начинается, когда удельный вес падает ниже 1,225 или напряжение измеряет менее 12,4 (батарея 12 В) или 6,2 (батарея 6 В). Сульфатирование может затвердевают на пластинах батареи, если оставить их на достаточно долгое время, уменьшая и в конечном итоге разрушая способность батареи генерировать номинальные вольты и амперы. Есть устройства для удаление жесткого сульфатирования, но лучший способ — предотвратить образование путем правильного уход за аккумулятором и зарядка после цикла разрядки.Сульфатирование — основная причина значительная часть свинцово-кислотных аккумуляторов не достигает своего химического срока службы.
Зарядка параллельно соединенных аккумуляторов
Батареи, подключенные параллельно (положительный к положительному, отрицательный к отрицательному), видны зарядное устройство как одна большая батарея суммарная емкость всех батарей в ампер-часах. Таким образом, три 12-вольтовых батареи по 100 ампер-час (ач) в параллельно видны как одна батарея на 12 вольт 300 ач.Их можно зарядить одним плюсом и отрицательное соединение от одного зарядного устройства с рекомендуемым выходом усилителя. Они также могут быть заряжены с зарядным устройством с несколькими выходами, например, в данном случае с трехъядерным блоком, с каждой батареей получение собственного подключения при напряжении аккумуляторной батареи. Зарядная сила тока будет суммой отдельных выходных усилителей.
Зарядная серия подключенных аккумуляторов
Батареи, соединенные последовательно, — это отдельная история.Три 12-вольтовых батареи по 100 ампер-часов соединены в последовательную цепочку (положительный к отрицательному, положительный к отрицательному, положительный к отрицательному) сделал бы батарею 36 вольт 100 ач. Его можно заряжать через батарею с помощью 36 вольт. выходное зарядное устройство соответствующего выхода усилителя. Их также можно заряжать с несколькими выходами зарядное устройство, как в данном случае блок из трех банков, при этом каждая батарея подключается к напряжение аккумулятора (в данном случае 12 вольт).Подойдет любой метод, БЕЗ одного или нескольких батареи отводятся при напряжении ниже, чем в системе. Например, постучать по одной из батарей в этой 36-вольтовой цепочке на 12 вольт для радио или некоторых ламп и т. д. Это разбалансирует батарею, и зарядка при системном напряжении (36 В) не исправляет дисбаланс. Зарядное устройство для нескольких банков подключение к каждой батарее — это правильный способ справиться с этой серией батарей, так как она исправляет дисбаланс при каждом цикле зарядки.
Домой | Учебники | Зарядка батареи
Технология регулирования напряжения Balmar — BalmarBalmar
Технология стабилизации напряжения Balmar
Генераторы с высокой выходной мощностью — важная часть вашей системы ухода за батареями, но определенно не единственная ее часть. Без надлежащего регулирования напряжения зарядка аккумулятора может быть медленным процессом или, что еще хуже, идеальным рецептом для раннего выхода аккумулятора из строя.
Все коммерческие генераторы переменного тока поставляются с внутренней схемой выпрямителя / регулятора, которая:
(1) Преобразует переменный ток, генерируемый генератором переменного тока, в постоянный, и (2) фиксирует выходное напряжение на статическом уровне — обычно 14.6 вольт.
Есть несколько недостатков с внутренними регуляторами:
(1) Не все аккумуляторные технологии хотят получать 14,6 вольт. (2) Все типы аккумуляторов имеют оптимальный «профиль» зарядки, что означает, что им нужны разные напряжения и токи на разных этапах цикла зарядки, а также изменения при изменении температуры аккумулятора. (3) После полной зарядки батареи могут перегреться, если на них подается постоянный ток при фиксированном напряжении заряда.
Запатентованные компанией Balmar регуляторы напряжения Max Charge и ARS-5 компанииобеспечивают динамический метод контроля состояния аккумуляторной батареи и применяют правильный уровень управления генератором (напряжение и ток), чтобы обеспечить быструю и безопасную зарядку аккумуляторов. Во время работы двигателя регуляторы Balmar проходят следующие этапы для обеспечения надлежащей зарядки аккумулятора:
Этап 1: Задержка пуска —
После запуска двигателя регулятор ожидает в течение нескольких секунд перед подачей тока возбуждения на генератор.Это позволяет двигателю и ремням прогреться перед приложением нагрузки генератора.
Этап 2: Мягкая рампа —
Регулятор медленно увеличивает возбуждение генератора, чтобы уменьшить нагрузку на ремень.
Этап 3: Зарядка наливом —
Регулятор увеличивает выходную мощность возбуждения до максимально безопасного уровня, позволяя генератору достичь максимальной выходной силы тока на основе целевых пределов заряжаемого типа батареи.Целевое напряжение колеблется от 14,1 В до 14,6 В в зависимости от выбранного типа батареи (напряжение объемной зарядки 24 В находится в диапазоне от 28,2 В до 29,2 В). Заводская установка времени наполнения составляет 18 минут, и ее можно полностью настроить в режиме расширенного программирования.
Этап 4: Расчетный объем —
В конце установленного периода времени большой емкости регулятор вычисляет состояние зарядки на основе способности генераторов переменного тока достигать и поддерживать заданное напряжение, а также процента выходного поля, необходимого для поддержания этого напряжения.На этом этапе будет поддерживаться объемная зарядка до тех пор, пока не будут выполнены все критерии, после чего регулятор снизится до напряжения поглощения.
Этап 5: Напряжение абсорбции —
Обычно на две десятых вольта ниже основного целевого напряжения, напряжение поглощения позволяет генератору переменного тока подавать ток в почти полностью заряженные батареи без перезарядки. Время абсорбции предварительно установлено на 18 минут и регулируется в расширенном режиме программирования регулятора.
Этап 6: Расчетное поглощение —
В конце установленного периода времени поглощения регулятор вычисляет состояние зарядки на основе способности генератора переменного тока достигать и поддерживать заданное напряжение и процента выходного поля, необходимого для поддержания этого напряжения.На этом этапе будет поддерживаться напряжение абсорбционной зарядки до тех пор, пока не будут выполнены все критерии, после чего регулятор снизится до напряжения холостого хода.
Этап 7: Напряжение холостого хода —
Обычно напряжение холостого хода на вольт ниже целевого основного напряжения позволяет генератору подавать ток в полностью заряженные батареи, достаточный для замены любой емкости батареи, используемой во время движения. Время плавания предварительно установлено на 18 минут и регулируется в режиме программирования регуляторов.
Этап 8: Расчетное число с плавающей запятой —
В конце установленного периода времени плавающего режима регулятор вычисляет состояние зарядки на основе способности генератора переменного тока поддерживать заданное напряжение плавающего режима и процента выходного поля, необходимого для поддержания этого напряжения. Если все критерии расчета соблюдены, регулятор продолжит поддерживать напряжение холостого хода. Если расчет показывает, что генератор не поддерживает напряжение батареи, регулятор вернется к напряжению поглощения.
Многоступенчатый регулятор Balmar: дополнительные характеристики
Выбираемые пользователем предустановленные программы батареи
Balmar предоставляет несколько профилей зарядки для обеспечения оптимальной зарядки. Просто выберите программу аккумуляторов, соответствующую вашей технологии аккумуляторов. Семейство регуляторов Max Charge содержит 8 предустановленных профилей заряда. ARS-5 содержит 5 предустановленных профилей.
Расширенные режимы программирования
Многоступенчатые регуляторыBalmar обладают широким набором расширенных настроек регулятора.Получив доступ к расширенной функции программирования, пользователь может изменять время зарядки и напряжения на всех этапах зарядки, настраивать время задержки запуска, пределы температурной компенсации, крутизны температурной компенсации и изменять уставки для реакции генератора на перегрев.
Датчик и контроль температуры генератора и аккумулятора
Многоступенчатые регуляторыBalmar обладают способностью автоматически корректировать мощность зарядки, чтобы гарантировать правильную зарядку аккумуляторов независимо от температуры окружающей среды.Если температура батареи превышает безопасный рабочий уровень, регуляторы максимального заряда и напряжения ARS-5 автоматически уменьшают выходную мощность зарядки, чтобы избежать опасных условий теплового разгона.
Управление нагрузкой на ленту
Многоступенчатые регуляторыBalmar могут защитить двигатель и ремень, позволяя пользователю снижать выходную мощность генератора с небольшими приращениями, регулируя диспетчер нагрузки на ремень. Регулируемый с шагом 4%, диспетчер нагрузки на ремень расширяет полосу пропускания импульсов поля регулятора, тем самым снижая нагрузку на приводной ремень.Диспетчер нагрузки на ремень также можно использовать для защиты генератора переменного тока в приложениях, где емкость аккумулятора превышает идеальные коэффициенты зарядки.
Выбор подходящего многоступенчатого регулятора Balmar для ваших нужд может вызвать затруднения. В следующей таблице указаны соответствующие регуляторы Balmar для каждого применения и серии генераторов Balmar. Щелкните номер детали, чтобы получить лист технических данных.
Регуляторы Balmar | Цифровая двойная зарядка | Центральное поле со сдвоенным двигателем | ||||
12 В | 24 В | |||||
Предустановленные многоступенчатые программы работы с батареями Номер детали: | АРС-5 | MC-614 | MC-612-DUAL | MC-624 | DDC-12/24 | CFII-12/24 |
Универсальная заводская программа, заливка глубоким циклом, гелевая ячейка, мат из абсорбированного стекла (AGM) и заливка спиральной намоткой (Optima) | Есть | Есть | Есть | Есть | Есть | Есть |
Стандартные затопленные, чувствительные к напряжению галогенные системы, литиевые | Есть | Есть | Есть | Есть | Есть | |
Модели генератора переменного тока Balmar | ||||||
Генераторы 6-й серии (70A-120A) | Есть | Есть | Есть | Есть | Есть | Есть |
Генераторы переменного тока серии AT (165A-200A) | Есть | Есть | Есть | Есть | ||
Генераторы переменного тока с большим корпусом серии 9 (140A-310A) | Есть | Есть | Есть | Есть | Есть | |
Несколько конфигураций генератора / двигателя | ||||||
Двойной двигатель, по одному генератору на каждый | Да (требуется 2) | Да (требуется 2) | Есть | Есть | ||
Один двигатель, два генератора | Есть | Да (требуется 2) | Есть | Есть |
Патент США на зарядное устройство с импульсным регулированием тока Патент (Патент №4,355,275, выдан 19 октября 1982 г.)
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ1.Область изобретения
Это изобретение в целом относится к зарядным устройствам для аккумуляторов, в частности к автомобильным зарядным устройствам.
2. Описание предшествующего уровня техники
Когда аккумулятор автомобиля разряжается, обычным средством решения проблемы является запуск автомобиля и затем возможность собственной системы зарядки автомобиля подзарядить аккумулятор. Проблема с запуском отскока заключается в том, что это беспорядочная и иногда опасная операция.
Другой альтернативой является прямая подзарядка автомобильного аккумулятора с помощью зарядного устройства, подключенного к обычному источнику переменного тока.Этот вариант не подходит для большинства дорожных или аварийных ситуаций.
В патенте США. В US 4 258 305 Russell E. Anglin описывается аварийное зарядное устройство, которое заряжает разряженный аккумулятор автомобиля через гнездо прикуривателя. Хотя Энглин практичен и экономичен, он не так эффективен и не так быстр, как мог бы, поскольку весь зарядный ток должен проходить через токоограничивающую лампу.
СУЩНОСТЬ ИЗОБРЕТЕНИЯЦелью настоящего изобретения является создание компактного, легкого зарядного устройства, которое можно легко и ненавязчиво хранить в небольшом пространстве, таком как перчаточный ящик автомобиля.
Еще одной задачей этого изобретения является создание зарядного устройства, которое заряжает аккумулятор автомобиля путем подключения к гнезду прикуривателя автомобиля наиболее быстрым способом.
Вкратце, изобретение включает в себя первую вилку, соединяемую с гнездом прикуривателя автомобиля с разряженной батареей, вторую вилку, соединяемую с гнездом прикуривателя другого автомобиля, провод, соединяющий заземленные клеммы двух вилок вместе, и автоматический выключатель с самовозвратом, соединяющий положительные контакты двух вилок вместе.Когда вилки вставляются в гнезда прикуривателей двух автомобилей, ток течет от заряженной батареи к разряженной. Когда ток превысит заданный уровень, автоматический выключатель выключится, а затем снова включится, создавая пульсирующую форму волны тока, которая передает ток разряженной батарее как можно быстрее, не перегорая предохранитель прикуривателя.
В более роскошном варианте осуществления этого изобретения включены мигалка, выключатель и лампа накаливания, так что устройство может по-разному служить в качестве аварийного мигалки и прожектора.Счетчик, откалиброванный в минутах, также включен, чтобы указать, сколько минут времени зарядки потребуется для перезарядки разряженной батареи.
Преимущество этого изобретения состоит в том, что оно компактно и легкое и может заменять громоздкие перемычки.
Еще одно преимущество этого изобретения состоит в том, что автомобильный аккумулятор можно удобно заряжать через прикуриватель, что позволяет избежать большинства опасностей, связанных с запуском двигателя от рывка.
Основным преимуществом этого изобретения является то, что автомобильный аккумулятор можно заряжать через прикуриватель наиболее быстро из-за возможности устройства пульсации тока.Когда ток протекает через автоматический выключатель, потери мощности в цепи практически отсутствуют, а зарядный ток ограничивается только внутренним сопротивлением батарей и соединительных проводов.
Эти и другие цели и преимущества настоящего изобретения, несомненно, станут очевидными после прочтения нижеследующего описания и изучения нескольких фигур чертежа.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖАРИС. 1 представляет собой вид в перспективе зарядного устройства для аккумуляторов в соответствии с настоящим изобретением.
РИС. 2 — принципиальная схема устройства.
РИС. 3 — график, функционально связывающий время зарядки в минутах с начальным напряжением разряженной батареи.
РИС. 4 — схематическая диаграмма второго предпочтительного варианта осуществления настоящего изобретения.
РИС. 5 — график, иллюстрирующий работу схем фиг. 2 и 4.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯСсылаясь на вид в перспективе на фиг.1 показано устройство в соответствии с настоящим изобретением, содержащее шасси 10, включающее непрозрачную нижнюю часть 12 и прозрачную верхнюю часть 14. На передней стороне нижней части 12 установлены измеритель 16 и селекторный переключатель 18. Выступающий со сторон нижней части проходят пара проводников 20 и 22, которые соединяют пару вилок 24 и 26 прикуривателя со схемой, размещенной в части 12. Верхняя часть 14 образует крышку для шасси, в которую входит лампочка 28.К верхней поверхности части 12 и вокруг основной части лампочки прикреплен отражатель 30.
Теперь обратимся к схеме на фиг. 2 показаны элементы схемы этого устройства, которые размещены в части 12. Как видно, выводы 20 и 22 содержат отдельные провода 32, 34 и 36, 38 соответственно. Провода 34 и 38 соединены вместе и обеспечивают заземление цепи. Провода 32 и 36 соединены между собой автоматическим выключателем 40, который для большинства целей имеет номинал 7.5 ампер. Автоматический выключатель самовосстанавливающийся.
Переключатель 18 показан как трехпозиционный переключатель DP3T, который используется для выбора функции устройства. Когда переключатель находится в нижнем положении, как показано, лампа 28 подключается к клеммам автоматического выключателя, и устройство готово к зарядке аккумулятора. Когда переключатель находится в центральном положении, лампочка заземлена, и устройство можно использовать как прожектор. Когда переключатель находится в верхнем положении, световой сигнал заземляется через мигалку 44, и устройство можно использовать в качестве аварийного мигающего блока.Лампа 28 предпочтительно представляет собой лампу накаливания на 12 В, 2 А.
Измеритель 16 соединен между проводами 32 и 34 с помощью резистора 46. Если измеритель имеет резистор 46 диапазона 1 мА, предпочтительно, он должен быть 1/4 Вт, 5% углеродным резистором приблизительно 10 кОм. Это позволит измерить диапазон примерно 12 вольт.
Теперь обратимся к фиг. 3 можно видеть, что существует функциональная зависимость между напряжением «V» на разряженной батарее и временем «T», которое требуется для того, чтобы разряженная батарея перезарядилась.Например, если у разряженной батареи напряжение между клеммами равно нулю, потребуется тридцать минут для подзарядки, а если между клеммами 5 вольт, потребуется около 16 1/2 минут для зарядки. Таким образом, циферблат измерителя 16 можно откалибровать за считанные минуты для подзарядки.
Когда вилка 24 вставляется в гнездо прикуривателя автомобиля с разряженной батареей, а вилка 26 вставляется в гнездо прикуривателя автомобиля с заряженной батареей, ток будет течь от исправной батареи к разряженной батарее через автоматический выключатель. 40.Если протекающий ток меньше 7,5 ампер, автоматический выключатель не сработает, и лампа 28 не загорится, поскольку между ее выводами будет нулевой потенциал. Однако, если ток действительно превышает 7,5 ампер, как это, вероятно, произойдет, когда разряженная батарея только начинает заряжаться, автоматический выключатель 40 размыкается и лампа 28 загорается. Ток, протекающий через лампочку, начнет заряжать разряженную батарею. Между тем, автоматический выключатель 40 самовосстанавливается, и ток снова течет между батареями без падения IR.Если ток по-прежнему превышает 7,5 ампер, автоматический выключатель снова размыкается, и вышеупомянутый цикл повторяется. Таким образом, когда ток через устройство будет превышать 7,5 ампер, фактический ток будет колебаться между током срабатывания автоматического выключателя и величиной тока, проходящего через лампу.
Фактический ток, пропускаемый автоматическим выключателем, может несколько превышать 7,5 ампер, на которые он рассчитан. Такая возможность была предусмотрена в конструкции этого устройства, поскольку 15-амперный предохранитель в цепи гнезда прикуривателя автомобиля действительно может пройти 30.0 ампер в течение 10 секунд. Поскольку провода 20 и 22 имеют длину 18 футов и предпочтительно изготовлены из проволоки калибра 16, они обладают достаточным внутренним сопротивлением, чтобы предотвратить протекание более 30 ампер, и автоматический выключатель сработает задолго до того, как пройдут 10 секунд.
Для использования устройства в качестве зарядного устройства переключатель 18 сначала переводят в нижнее положение, а затем вилку 24 вставляют в гнездо прикуривателя автомобиля с разряженным аккумулятором. Затем включаются фары, чтобы обеспечить нагрузку на аккумулятор, и счетчик 16 снимается, чтобы определить время перезарядки.Затем выключаются фары и все другие аксессуары. Вилка 26 вставляется в гнездо прикуривателя автомобиля с заряженным аккумулятором, и свет 28 просматривается. Если лампа мигает, ничего не предпринимается, пока мерцание не прекратится. Когда лампа не мигает, двигатель автомобиля с исправным аккумулятором запускается и остается включенным до полной зарядки разряженного аккумулятора.
Для использования устройства в качестве прожектора селекторный переключатель устанавливается в центральное положение, а вилка 26 вставляется в гнездо прикуривателя.Чтобы использовать устройство в качестве мигающего устройства, переключатель 18 устанавливают в его верхнее положение, а вилку 26 вставляют в гнездо прикуривателя.
Теперь обратимся к фиг. 4, второй предпочтительный вариант осуществления настоящего изобретения включает автоматический выключатель 100 с самовозвратом, D.P.D.T. переключатель 102, пара резисторов 104 и 106, транзистор 108 NPN и светодиод 110. Клеммы переключателя 102 соединены так, что переключатель функционирует как сильноточный переключатель SPST между линиями 112 и 114.
Автоматический выключатель 100 представляет собой двухконтактный автоматический выключатель с самовозвратом того же типа, который обсуждался ранее, и подключен к линии 114 и линии 116. Транзистор 108 имеет эмиттер, соединенный с заземляющим проводом 118, а его основание — с линией 112 с помощью резистора смещения 106, а его коллектор к линии 114 путем последовательного включения токоограничивающего резистора 104 и светодиода 110.
Для зарядки аккумулятора в этом втором варианте осуществления переключатель 102 размыкается, так что схема находится в «тестовом» режиме.Линии 112 и 118 подключены к разряженной батарее через гнездо прикуривателя этого автомобиля, а линии 116 и 118 соединены с исправным аккумулятором через гнездо прикуривателя другого автомобиля. Если соединения с гнездами прикуривателя в порядке, ток смещения будет течь через резистор 106 от разряженной батареи к транзистору прямого смещения 108, а ток будет проходить через автоматический выключатель 100, резистор 104, светодиод 110 и транзистор 108, чтобы включить светодиод. . Если светодиод не горит, разъемов прикуривателя недостаточно для зарядки разряженной батареи.
После проверки правильности соединений прикуривателя выключатель 102 замыкается, так что линии 112 и 114 соединяются вместе. Ток течет от исправной батареи к разряженной батарее через автоматический выключатель 100 до тех пор, пока ток через автоматический выключатель не превысит заданный максимум, в это время автоматический выключатель отключается и включается, как обсуждалось ранее.
На ФИГ. 5 показана диаграмма производительности двух вариантов осуществления. Абсцисса на диаграмме — время заряда, а ордината на диаграмме — ток заряда.Пунктирная линия 200 указывает заранее определенный максимальный ток (ток срабатывания) для автоматического выключателя с самовозвратом. Обратимся сначала к работе варианта осуществления, показанного на фиг. 4, когда переключатель 102 впервые замыкается, от исправной батареи к разряженной батарее протекает скачок тока 202, который фактически превышает максимальный уровень 200 тока в течение короткого периода времени. Затем автоматический выключатель 100 срабатывает, и ток падает по существу до нуля в течение времени t, которое требуется автоматическому выключателю для самовосстановления.Затем меньший ток 204 протекает в разряженную батарею, и цикл повторяется до тех пор, пока ток, потребляемый разряженной батареей, не упадет ниже максимального уровня тока автоматического выключателя. Это состояние обозначено позицией 206. С этого момента автоматический выключатель 100 не сработает, и зарядный ток будет экспоненциально затухать. Регулировка импульса тока заряжает батарею в кратчайшие сроки, поскольку во время зарядки в цепи отсутствует падение ИК-излучения.
Работа схемы первого варианта осуществления отличается от работы схемы второго варианта осуществления из-за включения обходной лампы 28. Как показано пунктирной линией в позиции 208 на фиг. 5, разряженная батарея будет продолжать пропускать ток через лампу 28, когда выключатель 40 разомкнут. Как обозначено позицией 206, когда автоматический выключатель замыкается навсегда, скорость заряда увеличивается, поскольку исключается падение ИК-излучения через лампу.
Хотя это изобретение было описано в терминах нескольких предпочтительных вариантов осуществления, предполагается, что люди, читающие предшествующие описания и изучающие чертеж, поймут различные его изменения, перестановки и модификации.Например, твердотельная схема может заменить механическое реле настоящего устройства, если оно работает по существу таким же образом. Следовательно, предполагается, что нижеследующая прилагаемая формула изобретения должна интерпретироваться как включающая все такие изменения, перестановки и модификации, как подпадающие под истинный дух и объем настоящего изобретения.
Основы управления солнечным зарядом| Северная Аризона Wind & Sun
Купите наш выбор контроллеров заряда от солнечных батарей здесь .
Что такое контроллер заряда от солнечных батарей?
Контроллер заряда или регулятор заряда — это, по сути, регулятор напряжения и / или тока, предназначенный для предотвращения перезарядки аккумуляторов. Он регулирует напряжение и ток, поступающие от солнечных панелей к батарее. Большинство панелей «12 вольт» выдают от 16 до 20 вольт, поэтому, если нет регулирования, батареи будут повреждены из-за перезарядки. Большинству аккумуляторов для полной зарядки требуется от 14 до 14,5 вольт.
Всегда ли нужен контроллер заряда?
Не всегда, но обычно.Как правило, нет необходимости в контроллере заряда с небольшими частями обслуживания или панелях постоянного заряда, таких как панели от 1 до 5 Вт. Приблизительное правило состоит в том, что если панель выдает около 2 Вт или меньше на каждые 50 ампер-часов батареи, то она вам не нужна.
Например, стандартный залитый аккумулятор для гольф-кара составляет около 210 ампер-часов. Таким образом, чтобы поддерживать серию из них (12 В) только для обслуживания или хранения, вам понадобится панель мощностью около 4,2 Вт. Популярные 5-ваттные панели достаточно близки и не нуждаются в контроллере.Если вы обслуживаете батареи AGM глубокого разряда, такие как Concorde Sun Xtender, вы можете использовать панель меньшего размера на 2–2 Вт.
Почему панели на 12 вольт — это 17 вольт?
Тогда возникает очевидный вопрос — «почему панели не созданы только для того, чтобы выдавать 12 вольт». Причина в том, что если вы это сделаете, панели будут обеспечивать питание только в прохладном, идеальном состоянии и на ярком солнце. В большинстве случаев это не то, на что можно рассчитывать. Панели должны обеспечивать дополнительное напряжение, чтобы, когда солнце находится низко в небе, или у вас сильная дымка, облачность или высокие температуры *, вы все равно получаете некоторую мощность от панели.Полностью заряженная «12-вольтовая» батарея составляет около 12,7 вольт в состоянии покоя (примерно от 13,6 до 14,4 в режиме зарядки), поэтому панель должна выдержать, по крайней мере, столько же в худших условиях.
* Вопреки интуиции, солнечные панели лучше всего работают при более низких температурах. Грубо говоря, панель мощностью 100 Вт при комнатной температуре будет панелью на 83 Вт при температуре 110 градусов.
Подробная информация о контроллерах заряда MPPT.
Контроллер заряда регулирует напряжение на выходе панели от 16 до 20 вольт до уровня, необходимого для батареи в данный момент.Это напряжение будет варьироваться от 10,5 до 14,6, в зависимости от состояния заряда батареи, типа батареи, режима работы контроллера и температуры. (см. полную информацию о напряжениях аккумуляторов в нашем разделе о аккумуляторах).
Использование панелей высокого напряжения (стяжки) с батареями
Почти все фотоэлектрические панели мощностью более 140 Вт НЕ являются стандартными 12-вольтовыми панелями и не могут (или, по крайней мере, не должны) использоваться со стандартными контроллерами заряда. Напряжения на решетчатых панелях сильно различаются, обычно от 21 до 60 вольт или около того.Некоторые из них представляют собой стандартные панели на 24 В, но большинство — нет.
Что происходит при использовании стандартного контроллера
Standard (то есть все, кроме типов MPPT), часто будет работать с панелями высокого напряжения, если не превышено максимальное входное напряжение контроллера заряда. Однако вы потеряете много энергии — от 20 до 60% от того, на что рассчитана ваша панель. Органы управления зарядкой принимают выходной сигнал панелей и подают ток на батарею до тех пор, пока она не будет полностью заряжена, обычно около 13.От 6 до 14,4 вольт. Панель может выдавать только определенное количество ампер, поэтому, хотя напряжение снижается с, скажем, 33 вольт до 13,6 вольт, сила тока с панели не может превышать номинальный ток — так что с панелью 175 ватт, рассчитанной на 23 в / 7,6 вольт. ампер, вы получите только 7,6 ампер при напряжении 12 вольт или около того. Закон Ома гласит, что ватт — это вольт x ампер, поэтому ваша 175-ваттная панель потребляет только около 90 ватт в батарее.
Использование контроллера MPPT с панелями высокого напряжения
Единственный способ получить полную мощность от солнечных панелей с высоковольтной сеткой — это использовать контроллер MPPT.См. Ссылку выше для получения подробной информации о контроле заряда MPPT. Поскольку большинство элементов управления MPPT могут потреблять до 150 В постоянного тока (некоторые могут быть выше, до 600 В постоянного тока) на стороне входа солнечной панели, вы часто можете последовательно соединить две или более панели высокого напряжения, чтобы уменьшить потери в проводе или использовать провод меньшего размера. . Например, с упомянутой выше 175-ваттной панелью 2 из них последовательно дадут вам 46 вольт при 7,6 ампер на контроллер MPPT, но контроллер преобразует это примерно до 29 ампер при 12 вольт.
Типы контроллеров зарядного устройства
Элементы управления зарядкойбывают всех форм, размеров, функций и цен. Они варьируются от небольшого блока управления на 4,5 А (Sunguard) до программируемых контроллеров MPPT от 60 до 80 А с компьютерным интерфейсом. Часто, если требуются токи более 60 ампер, два или более блока от 40 до 80 ампер подключаются параллельно. Наиболее распространенные элементы управления, используемые для всех систем на батарейках, находятся в диапазоне от 4 до 60 ампер, но некоторые из новых элементов управления MPPT, такие как Outback Power FlexMax, достигают 80 ампер.
Элементы управления зарядкой бывают 3 основных типов (с некоторым перекрытием):
Простые одно- или двухступенчатые устройства управления , которые используют реле или шунтирующие транзисторы для управления напряжением в один или два этапа. По сути, они просто замыкают или отключают солнечную панель при достижении определенного напряжения. С практической точки зрения это динозавры, но некоторые из них все еще встречаются в старых системах, а некоторые из супердешевых продаются в Интернете. Их единственная реальная претензия на славу — их надежность — у них так мало компонентов, что сломать нечего.
3-ступенчатый и / или ШИМ , такие как Morningstar, Xantrex, Blue Sky, Steca и многие другие. Сейчас это в значительной степени отраслевой стандарт, но иногда вы все еще будете видеть некоторые из старых типов шунтов / реле, например, в очень дешевых системах, предлагаемых дискаунтерами и массовыми маркетологами.
Отслеживание точки максимальной мощности (MPPT), например, производства Midnite Solar, Xantrex, Outback Power, Morningstar и других. Это лучшие контроллеры с соответствующими ценами, но с эффективностью в диапазоне от 94% до 98% они могут сэкономить значительные деньги на более крупных системах, поскольку они обеспечивают на 10–30% больше энергии для батареи.Для получения дополнительной информации см. Нашу статью о MPPT.
Большинство контроллеров поставляются с каким-либо индикатором: простым светодиодом, серией светодиодов или цифровыми индикаторами. Многие новые модели, такие как Outback Power, Midnite Classic, Morningstar MPPT и другие, теперь имеют встроенные компьютерные интерфейсы для мониторинга и управления. В самых простых обычно есть всего пара маленьких светодиодных ламп, которые показывают, что у вас есть питание и что вы получаете какой-то заряд. Большинство тех, у кого есть измерители, будут показывать как напряжение, так и ток, исходящий от панелей, и напряжение батареи.Некоторые также показывают, сколько тока снимается с клемм НАГРУЗКИ.
Все контроллеры заряда, которые мы имеем в наличии, относятся к трехступенчатому типу PWM и MPPT. (на самом деле «4-этап» — это своего рода рекламный ажиотаж — раньше его называли эквалайзером, но кто-то решил, что 4-й этап лучше, чем 3-й). А сейчас мы даже видим такую, которая рекламируется как «5-ступенчатая» ….
Что такое выравнивание?
Equalization делает то, что следует из названия, — пытается уравновесить — или сделать все ячейки в батарее или блоке батарей точно равным зарядом.По сути, это период перезаряда, обычно в диапазоне от 15 до 15,5 вольт. Если у вас некоторые ячейки в цепочке ниже, чем другие, они все будут загружены на полную мощность. В залитых батареях он также выполняет важную функцию перемешивания жидкости в батареях, вызывая пузырьки газа. Конечно, в трейлере или лодке это обычно не имеет для вас большого значения, если вы не стояли на стоянке в течение нескольких месяцев, поскольку обычное движение приведет к тому же. Кроме того, в системах с небольшими панелями или крупногабаритными аккумуляторными системами вам может не хватить тока, чтобы действительно сильно пузыриться.Во многих автономных системах аккумуляторы также могут быть уравновешены с помощью генератора + зарядного устройства.
Что такое ШИМ?
Довольно много регуляторов заряда имеют режим «ШИМ». ШИМ расшифровывается как широтно-импульсная модуляция. ШИМ часто используется как один из методов подзарядки. Вместо постоянного выходного сигнала контроллера он посылает на батарею серию коротких зарядных импульсов — очень быстрое переключение «вкл / выкл». Контроллер постоянно проверяет состояние батареи, чтобы определить, насколько быстро посылать импульсы и насколько длинными (широкими) будут импульсы.В полностью заряженном аккумуляторе без нагрузки он может просто «тикать» каждые несколько секунд и посылать на аккумулятор короткий импульс. В разряженной батарее импульсы будут очень длинными и почти непрерывными, или контроллер может перейти в режим «полностью включен». Контроллер проверяет уровень заряда аккумулятора между импульсами и каждый раз настраивается сам.
Обратной стороной ШИМ является то, что он также может создавать помехи в радиоприемниках и телевизорах из-за генерируемых им резких импульсов. Если у вас проблемы с шумом от вашего контроллера, см. Эту страницу.
Что такое выход «нагрузка» или «отключение по низкому напряжению»?
Некоторые контроллеры также имеют выход «LOAD» или LVD, который можно использовать для небольших нагрузок, таких как небольшие приборы и освещение. Преимущество заключается в том, что клеммы нагрузки имеют низковольтный разъединитель, поэтому он отключит все, что подключено к клеммам нагрузки, и не даст батарее разрядиться слишком сильно. Выход НАГРУЗКА часто используется для небольших некритических нагрузок, таких как освещение. Некоторые из них, такие как Schneider Electric C12, также можно использовать в качестве контроллера освещения, чтобы включать свет в темноте, но контроллер освещения Morningstar SLC обычно является лучшим выбором для этого. Не используйте выход LOAD для работы любых инверторов, кроме очень маленьких. Инверторы могут иметь очень высокие импульсные токи и могут привести к выходу контроллера из строя.
Большинству систем функция LVD не нужна — она может управлять только небольшими нагрузками. В зависимости от номинала контроллера это может быть от 6 до 60 ампер. Вы не можете запустить любой инвертор, кроме самого маленького, с выхода НАГРУЗКА. На некоторых контроллерах, таких как серия Morningstar SS, выход нагрузки может использоваться для управления сверхмощным реле для управления нагрузкой, запуска генератора и т. Д.Выход LOAD или LVD чаще всего используется в RV и удаленных системах, таких как камеры, мониторы и сайты сотовых телефонов, где нагрузка невелика и сайт не обслуживается.
Какие терминалы «Sense» на моем контроллере?
Некоторые контроллеры заряда имеют пару «сенсорных» терминалов. Сенсорные клеммы пропускают очень низкий ток, самое большее около 1/10 миллиампера, поэтому нет падения напряжения. Что он делает, так это «смотрит» на напряжение батареи и сравнивает его с тем, что выдает контроллер.Если есть падение напряжения между контроллером заряда и аккумулятором, он немного поднимет выходной сигнал контроллера для компенсации.
Они используются только тогда, когда у вас есть длинный провод между контроллером и аккумулятором. Эти провода не пропускают ток и могут быть довольно маленькими — от №20 до №16 AWG. Мы предпочитаем использовать №16, потому что его нелегко разрезать или случайно раздавить. Они подключаются к клеммам SENSE на контроллере и к тем же клеммам, что и два провода зарядки на конце аккумулятора.
Что такое «Монитор системы батареи»?
Системные мониторы аккумуляторных батарей, такие как Bogart Engineering TriMetric 2025A, не являются контроллерами. Вместо этого они контролируют вашу систему батарей и дают вам довольно хорошее представление о состоянии вашей батареи, а также о том, что вы используете и генерируете. Они отслеживают общее количество ампер-часов в батареях и разрядах, состояние заряда батареи и другую информацию. Они могут быть очень полезны для средних и крупных систем для точного отслеживания того, что ваша система делает с различными источниками зарядки.Они несколько излишни для небольших систем, но являются своего рода забавной игрушкой, если вы хотите увидеть, что делает каждый усилитель :-). Новая модель TriMetric PentaMetric также имеет компьютерный интерфейс и многие другие функции.
Чтобы получить полный список всех наших контроллеров заряда, узнать цены или сделать заказ в Интернете, посетите нашу страницу Контроллеры заряда в нашем интернет-магазине. Информацию о мониторах батарей, измерителях и шунтах см. На нашей странице «Измерители и мониторы».
% PDF-1.7 % 213 0 объект > эндобдж xref 213 85 0000000016 00000 н. 0000002567 00000 н. 0000002712 00000 н. 0000002748 00000 н. 0000003967 00000 н. 0000003994 00000 н. 0000004132 00000 н. 0000004381 00000 п. 0000004495 00000 н. 0000004607 00000 н. 0000005071 00000 н. 0000005519 00000 н. 0000006113 00000 п. 0000006382 00000 п. 0000006995 00000 н. 0000007032 00000 н. 0000007080 00000 н. 0000007904 00000 н. 0000008053 00000 н. 0000008185 00000 н. 0000008751 00000 н. 0000008778 00000 н. 0000009198 00000 п. 0000010089 00000 п. 0000010516 00000 п. 0000011081 00000 п. 0000011188 00000 п. 0000011646 00000 п. 0000012001 00000 п. 0000012650 00000 п. 0000013215 00000 п. 0000013970 00000 п. 0000014803 00000 п. 0000015623 00000 п. 0000016426 00000 п. 0000016594 00000 п. 0000016708 00000 п. 0000016986 00000 п. 0000017803 00000 п. 0000018522 00000 п. 0000021172 00000 п. 0000025248 00000 п. 0000034355 00000 п. 0000034602 00000 п. 0000049727 00000 н. 0000075813 00000 п. 0000083625 00000 п. 0000118659 00000 н. 0000118729 00000 н. 0000118827 00000 н. 0000146813 00000 н. 0000147076 00000 н. 0000147512 00000 н. 0000148224 00000 н. 0000148289 00000 н. 0000148380 00000 н. 0000150487 00000 н. 0000150780 00000 н. 0000151025 00000 н. 0000151052 00000 н. 0000151429 00000 н. 0000170258 00000 н. 0000170518 00000 н. 0000170955 00000 н. 0000175526 00000 н. 0000175565 00000 н. 0000184733 00000 н. 0000184983 00000 н. 0000185363 00000 н. 0000185745 00000 н. 0000186233 00000 н. 0000186722 00000 н. 0000209455 00000 н. 0000209730 00000 н. 0000210119 00000 п. 0000210525 00000 н. 0000210923 00000 п. 0000248454 00000 н. 0000248493 00000 н. 0000257436 00000 н. 0000257511 00000 н. 0000257894 00000 н. 0000260445 00000 н. 0000260522 00000 н. 0000001996 00000 н. трейлер ] / Назад 452758 >> startxref 0 %% EOF 297 0 объект > поток hb«e`e`g`gb @
Как работают контроллеры заряда | altE
Контроллеры заряда
Заряд контроллер является неотъемлемой частью почти всех энергосистем, которые заряжают батареи, независимо от того, являются ли они солнечными батареями, ветряными, гидроэнергетическими, топливными или инженерная сеть.Его цель — правильно хранить батареи глубокого разряда. сытые и безопасные на долгое время.
Основные функции контроллера довольно просты. Блок контроллеров заряда обратный ток и предотвратить перезарядку аккумулятора. Некоторые контроллеры также предотвращают переразряд батареи, защита от электрической перегрузки и / или отображение батареи статус и поток власти. Рассмотрим каждую функцию индивидуально.
Блокировка обратного токаСолнечные панели работать, прокачивая ток через батарею в одном направлении.Ночью панели могут пропускать ток в обратном направлении, вызывая небольшой разряд от АКБ. (Наш термин «батарея» обозначает одну батарею или батарею.) Потенциальная потеря незначительна, но ее легко предотвратить. Некоторые типы ветряных и гидрогенераторов также потребляют обратный ток, когда они остановка (большинство из них, кроме случаев неисправности).
В большинстве контроллеров зарядный ток проходит через полупроводник (транзистор), который действует как вентиль для управления током.Его называют «полупроводником», потому что он пропускает ток только в одном направлении. Он предотвращает обратный ток без каких-либо дополнительных усилий и затрат.
В некоторых старых контроллерах электромагнитная катушка размыкает и замыкает механический переключатель (называется реле — вы можете слышать, как он включается и выключается). выключено ночью, чтобы заблокировать обратный ток. Эти контроллеры иногда называют в качестве контроллеров шунта вызова.
Если вы используете солнечную батарею только для подзарядки аккумулятора (очень небольшой массив относительно размера АКБ), то зарядка может и не понадобиться контроллер.Это редкое приложение. Пример — крошечный модуль обслуживания. который предотвращает разрядку аккумулятора в припаркованном автомобиле, но не поддерживает значительную нагрузки. В этом случае вы можете установить простой диод, чтобы заблокировать обратный ток. Диод, используемый для этой цели, называется «блокирующим диодом».
Предотвращение завышения ценКогда аккумулятор полностью заряжен, он больше не может накапливать поступающую энергию. Если энергия продолжает подаваться с полной скоростью, напряжение батареи становится слишком высоким.Вода разделяется на водород и кислород и быстро пузырится. (Похоже, он кипит, поэтому мы иногда его так называем, хотя на самом деле он не горячий.) Имеется чрезмерная потеря воды и вероятность того, что газы могут воспламениться и вызвать небольшой взрыв. Батарея также быстро разряжается и может перегреться. Избыточное напряжение также может вызвать перегрузку ваших нагрузок (освещение, бытовые приборы и т. Д.) Или привести к отключению инвертора.
Предотвращение перезарядки — это просто вопрос уменьшения потока энергии на аккумулятор, когда аккумулятор достигает определенного напряжения.Когда напряжение падает из-за более низкой интенсивности солнечного света или увеличения потребления электроэнергии контроллер снова позволяет максимально возможный заряд. Это называется «регулировкой напряжения». Это самая важная функция всех контроллеров заряда. Контроллер «смотрит» на напряжение, и в ответ регулирует зарядку аккумулятора.
Некоторые контроллеры регулируют подачу энергии к батарее, полностью или полностью отключая ток. Это называется «управление включением / выключением». Другие уменьшают ток постепенно.Это называется «широтно-импульсной модуляцией» (ШИМ). Оба метода хорошо работают при правильной настройке для вашего типа батареи.
A PWM контроллеры заряда солнечных батарей поддерживают постоянное напряжение. Если он имеет двухступенчатое регулирование, он сначала будет поддерживать напряжение на безопасном максимуме, чтобы аккумулятор полностью зарядился. Затем он снизит напряжение, чтобы поддерживать «завершающий» или «струйный» заряд. Двухступенчатое регулирование важно для системы, которая может испытывать много дней или недель избытка энергии (или небольшого использования энергии).Он поддерживает полный заряд, но сводит к минимуму потерю воды и стресс.
Напряжения, при которых контроллер изменяет скорость заряда, называются установленными. точки. При определении идеальных уставок существует некоторый компромисс между Быстрая зарядка до захода солнца и небольшая перезарядка аккумулятора. Определение уставок зависит от ожидаемых моделей использования, тип батареи и, в некоторой степени, опыт и философия системный разработчик или оператор. Некоторые контроллеры имеют регулируемые уставки, а другие нет.
Контрольные уставки в зависимости от температурыИдеальные уставки напряжения для контроля заряда зависят от температуры аккумулятора. Некоторые контроллеры имеют функцию, называемую «температурной компенсацией». Когда Контроллер обнаруживает низкую температуру батареи, он повышает заданные значения. Иначе когда аккумулятор холодный, он слишком быстро снизит заряд. Если ваши батареи подвергаются перепадам температур более примерно 30 ° F (17 ° C), компенсация необходима.
Некоторые контроллеры имеют встроенный датчик температуры.Такой контроллер должен быть установлен в месте, где температура близка к температуре батарей. У лучших контроллеров есть выносной датчик температуры на небольшом кабеле. Датчик должен быть подключен непосредственно к батарее, чтобы сообщать о своей температуре контроллеру.
Альтернативой автоматической температурной компенсации является ручная регулировка заданных значений (если возможно) в соответствии с сезоном. Может быть, достаточно делать это только два раза в год, весной и осенью.
Контрольные уставки vs.Тип батареиИдеальные уставки для контроля заряда зависят от конструкции аккумулятора. В подавляющем большинстве систем возобновляемой энергетики используются свинцово-кислотные батареи глубокого цикла. либо затопляемого, либо герметичного типа. Залитые батареи залиты с жидкостью. Это стандартные экономичные батареи глубокого разряда.
Герметичные батареи используют пропитанные прокладки между пластинами. Их также называют «регулируемыми клапанами» или «абсорбирующим стекломатом» или просто «необслуживаемыми».«Их нужно регулировать до немного более низкого напряжения, чем залитые батареи, иначе они высохнут и выйдут из строя. У некоторых контроллеров есть средства для выбора типа батареи. Никогда не используйте контроллер, не предназначенный для вашего типа батареи.
Выключатель низкого напряжения (LVD)
Типичные уставки для свинцово-кислотных аккумуляторов 12 В при 25 ° C (77 ° F)(Типичные значения, представлены здесь только для примера.)
Верхний предел (залитый аккумулятор): 14,4 В
Верхний предел ( герметичный аккумулятор): 14,0 В
Возобновить полную зарядку: 13.0 ВРазъединитель низкого напряжения: 10,8 В
Повторное подключение: 12,5 ВТемпературная компенсация для батареи 12 В:
-0,03 В на каждый ° C отклонение от стандартного 25 ° C
Глубокий цикл батареи, используемые в системах возобновляемой энергии, предназначены для разряда примерно на 80 процентов. Если они разряжаются на 100 процентов, они сразу поврежден. Представьте себе кастрюлю с водой, кипящую на кухонной плите. В тот момент, когда это высыхает, кастрюля перегревается.Если подождать, пока прекратится пар, значит, он уже слишком поздно!
Точно так же, если вы подождете, пока ваши огни не станут тусклыми, возможно, некоторое повреждение батареи уже произошло. Каждый раз, когда это происходит, емкость и срок службы батареи будут немного уменьшаться. Если аккумулятор находится в таком чрезмерно разряженном состоянии в течение нескольких дней или недель, он может быстро выйти из строя.
Единственный способ предотвратить чрезмерный разряд, когда все остальное не работает, — это отключить нагрузки (приборы, освещение и т. Д.).), а затем повторно подключить их только после восстановления напряжения из-за значительной зарядки. Когда приближается переразряд, батарея на 12 В падает ниже 11 вольт (батарея на 24 В падает ниже 22 В).
Цепь отключения при низком напряжении отключает нагрузку при достижении этой уставки. Он будет повторно подключать нагрузки только тогда, когда напряжение батареи существенно восстановится из-за накопления некоторого заряда. Типичная точка сброса LVD составляет 13 В (26 В в системе 24 В).
Все современные инверторы имеют встроенный LVD, даже дешевые карманные.Инвертор выключится, чтобы защитить себя и свои нагрузки, а также аккумулятор. Как обычно, инвертор подключается непосредственно к батареям, а не через контроллер заряда, потому что его текущее потребление может быть очень высоким, и потому что он не требует внешнего LVD.
Если у вас есть нагрузки постоянного тока, у вас должен быть LVD. Некоторые контроллеры заряда имеют один встроенный. Вы также можете получить отдельное устройство LVD. Некоторые системы LVD имеют «выключатель милосердия», позволяющий потреблять минимальное количество энергии, по крайней мере, достаточно долго найти свечи и спички! ОКРУГ КОЛУМБИЯ холодильники имеют встроенный LVD.
Если вы покупаете контроллер заряда со встроенным LVD, убедитесь, что его емкость достаточна для обработки ваших нагрузок постоянного тока. Например, предположим, что вам нужен контроллер заряда для работы с током заряда менее 10 ампер, но у вас есть нагнетательный насос постоянного тока, который потребляет 20 ампер (на короткие периоды) плюс световая нагрузка постоянного тока 6 ампер. Подойдет контроллер заряда с LVD на 30 ампер. Не покупайте контроллер заряда на 10 ампер, который имеет нагрузочную способность только 10 или 15 ампер!
Защита от перегрузкиЦепь перегружена, когда ток в ней превышает допустимый безопасно обрабатывать.Это может вызвать перегрев и даже опасность возгорания. Перегрузка может быть вызвано неисправностью (коротким замыканием) в проводке или неисправным прибором (как насос замерзшей воды). Некоторые контроллеры заряда имеют защиту от перегрузки. встроенный, обычно с кнопкой сброса.
Может быть полезна встроенная защита от перегрузки, но для большинства систем требуется дополнительная защита в виде предохранителей или автоматических выключателей. Если у вас есть цепь с размером провода, для которого безопасная пропускная способность (допустимая нагрузка) меньше, чем предел перегрузки контроллера, вы должны защитить эту цепь с помощью предохранителя или прерывателя с подходящим более низким номинальным током.В любом случае соблюдайте требования производителя и Национальный электротехнический кодекс в отношении любых требований к внешним предохранителям или автоматическим выключателям.
Дисплеи и измерения Контроллеры зарядавключают в себя множество возможных дисплеев, от одного красного светового индикатора до цифровых дисплеев напряжения и тока. Эти индикаторы важны и полезны. Представьте себе поездку по стране без приборной панели в машине! Система отображения может отображать поток энергии в систему и из нее, приблизительное состояние заряда аккумулятора и время достижения различных пределов.
Если вам нужен полный и точный мониторинг, потратьте около 200 долларов США на отдельное цифровое устройство, которое включает в себя ампер-час. Он действует как электронный бухгалтер, отслеживая количество энергии, доступной в вашей батарее. Если у вас есть отдельный системный монитор, то наличие цифровых дисплеев в самом контроллере заряда не имеет значения. Даже самая дешевая система должна включать в себя вольтметр в качестве минимального индикатора функционирования и состояния системы.
Иметь все с панелью питанияЕсли вы устанавливаете систему для питания современного дома, вам понадобится безопасность. отсечки и межсоединения для работы с большим током.Электрическое оборудование может быть громоздким, дорогим и трудоемким в установке. Чтобы сделать вещи экономичными и компактный, получить готовый «силовой щит». Может включать в себя контроллер заряда с LVD, инвертор и цифровой мониторинг как опции. Это позволяет электрику легко связывать основные компоненты системы и соответствовать требованиям безопасности Национальный электротехнический кодекс или местные органы власти.
Контроллеры заряда для ветра и водыКонтроллер заряда для ветроэлектрической или гидроэлектрической системы зарядки должен защищать аккумуляторы от перезаряда, как и фотоэлектрический контроллер.Однако на генераторе должна быть постоянная нагрузка, чтобы предотвратить превышение частоты вращения турбины. Вместо того, чтобы отключать генератор от батареи (как и большинство фотоэлектрических контроллеров), он направляет избыточную энергию на специальную нагрузку, которая поглощает большую часть энергии от генератора. Эта нагрузка обычно представляет собой нагревательный элемент, который «сжигает» избыточную энергию в виде тепла. Если вы можете использовать тепло с пользой, прекрасно!
Это работает?Как узнать, что контроллер неисправен? Следите за вольтметром, когда батареи полностью заряжаются.Достигает ли напряжение (но не превышает ли оно) соответствующих уставок для вашего типа батареи? Используйте свои уши и глаза — сильно ли пузыряются батарейки? На верхних частях батареек скопилось много влаги? Это признаки возможного завышения цен. Получаете ли вы ожидаемую от аккумуляторной батареи емкость, которую ожидаете? В противном случае может быть проблема с вашим контроллером, и он может повредить ваши батареи.