Генератор автомобильный схема: Стартер генератор карбюратор автоэлектрика –Различные схемы автомобильных генераторов

Содержание

Стартер генератор карбюратор автоэлектрика –Различные схемы автомобильных генераторов

 Различные схемы автомобильных генераторов 

Схемы с внешним регулятором напряжения

Схемы со встроенным регулятором напряжения

Схемы с питанием обмотки возбуждения от выхода генератора

Схемы генераторов с дополнительными диодами

Схемы с многофункциональными регуляторами напряжения

Общие описания

Схемы с питанием обмотки возбуждения от выхода генератора 

Автомобильный генератор возбуждается от аккумулятора.  Как только включается зажигание, выходной транзистор регулятора открывается и через него идет  ток  возбуждения ,  генератор возбуждается. Когда генератор заработал, возбуждение происходит уже от самого генератора по той же цепи, через замок зажигания. При включенном зажигании в таких схемах плюс аккумулятора всегда остается подключенным к  обмотке возбуждения.

Регулятор напряжения может быть внешним и встроенным. Внешний регулятор это отдельная коробочка, которая соединяется с генератором проводами и стоит в стороне от генератора. Встроенный регулятор, входит в состав генератора, крепится внутри или снаружи корпуса, обычно, встроенный регулятор сделан вместе со щетками.

Это схема с внешним регулятором напряжения, с заземленной щеткой. По такой схеме сделан генератор Г 221, для автомобиля «Жигули» ВАЗ 2101,02, 03, 06, и ранней «Нивы»

Работа схемы автомобильного генератора (это описание применимо для всех последующих схем)

Схема генератора состоит из обмотки генератора, выпрямителя (Диодного моста), обмотки возбуждения в роторе, регулятора напряжения, аккумулятора и подключенных к генератору приборов электрооборудования. Аккумулятор и генератор работают совместно.  Когда генератор не работает все электрооборудование питается от аккумулятора. Когда генератор возбуждается, все начинает работать от генератора,  и  аккумулятор заряжается.  Аккумулятор создает первоначальный ток, для возбуждения генератора, то есть, намагничивает ротор. Аккумулятор для генератора нужен обязательно. Если нет аккумулятора, генератор можно крутить сколько угодно, он не заработает.

При включении зажигания, ток от плюса аккумулятора идет в ротор через щетки. Этот ток проходит через открытый транзистор регулятора напряжения. Ток  обмотки ротора намагничивает железные полюса с клювами. Двигатель заводится,  ротор раскручивается, и обмотка статора начинает испытывать резкие изменения магнитного поля от мелькающих клювов ротора. В обмотке статора возникает Электродвижущая сила (ЭДС). В цепи обмотки появляется переменный ток. Этот ток проходит через диодный мост, становится выпрямленным, близким по форме к постоянному.

Обмотка и ротор

Диодный мост

На всех приборах автомобиля и на аккумуляторе начинает действовать напряжение генератора. Напряжение генератора становится выше ЭДС аккумулятора, и он начинает заряжаться.

Когда генератор работает, ток возбуждения в ротор идет уже не от аккумулятора, а от самого генератора.   Регулирование напряжения генератора происходит изменением тока возбуждения.. 

Проблема возникает в том, что, ЭДС генератора значительно превышает необходимое значение напряжения, для работы электрооборудования.  Для того, чтобы поддерживать напряжение на заданном уровне 13, 8 – 14, 2 Вольта, к генератору подключен регулятор напряжения, он ограничивает напряжение генератора..

Регулирование напряжения

При включении, регулятор обязательно открыт, чтобы пропустить ток возбуждения, который намагничивает ротор. Когда генератор раскручивается, ЭДС сильно вырастает, регулятор, подключенный в выходу генератора, чувствует, что напряжении становится выше и закрывается, ток возбуждения уменьшается, напряжение генератора падает. Регулятор чувствует, что напряжение стало ниже и снова открывается, появляется ток возбуждения и напряжение растет, регулятор снова закрывается, и т. д. Напряжение пилообразно изменяется и в среднем поддерживается на заданном уровне.

С увеличением количества включенных приборов, мощность которую отдает генератор растет, а значит, напряжение на выходе генератора снижается, регулятор напряжения отслеживает это снижение и поддерживает напряжение генератора, пока хватает его мощности.

Регулятор поддерживает заданное напряжение на выходе генератора при изменениях числа оборотов и изменениях нагрузки. Это обеспечивает правильную зарядку аккумулятора, и нормальную работу всего электрооборудования.

Схема с внешним регулятором с заземленным транзистором, используется для многих типов устаревших генераторов. 1631,  192,  и.т..п. для автомобилей Волга и Газель с двигателем 402. На многих американских автомобилях, вплоть, до 90 годов, применялись генераторы с внешним регулятором напряжения. Например автомобили «Газель» с двигателем «Крайслер» были сделаны по такой схеме.

 

Схема генератора со встроенным регулятором напряжения

В этом случае регулятор напряжения смонтирован в единый узел со щеточным узлом, и установлен на генератор.

    

По такой схеме сделаны генераторы 58.3701, для автомобиля «Москвич» и все генераторы для автомобилей УАЗ, ЗиЛ, ГАЗ  80 -х — 90-х годов выпуска.

Все три схемы — это  схемы с питанием обмотки возбуждения от выхода генератора.  Первоначальное возбуждение происходит от аккумулятора, а после запуска  ток возбуждения берется с выхода генератора, то есть с той же самой точки.

Недостаток  Схемы с питанием обмотки возбуждения от выхода генератора.

Цепь возбуждения работает через замок зажигания, поэтому работа генератора зависит от состояния контактов замка зажигания, провода цепи возбуждения получаются очень длинными и, в целом, надежность  схемы недостаточно высокая.

Аккумулятор всегда подключен к плюсовому выводу генератора, это необходимо для того, чтобы генератор и аккумулятор могли работать как источники заменяя друг друга — двигатель не работает — источник аккумулятор, двигатель заработал — источник генератор, и все работает от него, а аккумулятор заряжается. Когда генератор не работает, аккумулятор, прямо  подключенный к нему, не может  бесполезно разряжаться через диодный мост потому, что диодный мост не пропускает ток в обратном направлении, но,

через обмотку возбуждения в роторе, аккумулятор может разрядиться.

Если двигатель не завелся и генератор не заработал, а зажигание осталось включено, то идет ток ротора от аккумулятора (а это 3 – 5 Ампер) и разряжает его. По разным причинам такие ситуации иногда возникают и тогда, через несколько часов невыключенного зажигания, двигатель не заведется. Такие схемы, в которых ротор запитан от выхода генератора и, значит, подключен непосредственно к аккумулятору, могут привести к неожиданной разрядке аккумулятора.

 

Схемы генераторов с дополнительными диодами

Можно сделать схему возбуждения генератора более короткой и надежной. Ток возбуждения  проходит только внутри генератора и не проходит во внешнюю цепь через замок зажигания. Для этого ток возбуждения берется  с обмоток генератора, выпрямляется отдельным маленьким выпрямителем и отправляется сразу в обмотку возбуждения.

Схема с дополнительными диодами позволяет защитить аккумулятор от случайного разряда через обмотку возбуждения. В такой схеме обмотка возбуждение, на прямую, не подсоединена  к выходу генератора и аккумулятора. Ток возбуждения протекает не от выхода диодного моста, соединенного с аккумулятором, а  прямо от своих обмоток  в обмотку возбуждения, через дополнительный выпрямитель.

Для первоначального возбуждения приходится использовать аккумулятор. Ток первоначального возбуждения, при включении замка зажигания, проходит в обмотку возбуждения через лампочку. Лампочка имеет большое сопротивление, поэтому ток в цепи возбуждения протекает маленький (лампочка светится), такого тока вполне достаточно для подмагничивания ротора. Как только ротор подмагнитился, генератор начинает вырабатывать напряжение и появляется ток в обмотках, этот ток идет через дополнительные диоды в обмотку возбуждения и намагничивание ротора возрастает, так генератор, практически сразу, возбуждается, получив первоначальный толчок маленьким током через лампочку. Дальше генератор работает уже самостоятельно, потребляя необходимый ток возбуждения через дополнительные диоды.  

Цепь внешнего возбуждения остается подключенной, она используется снова при следующем запуске двигателя. Лампочка, фактически, разделяет цепь первоначального возбуждения генератора и цепь рабочего возбуждения. Ток обмотки  возбуждения может достигать 5-и Ампер, но чтобы обмотка возбуждения не могла  потреблять такой ток от аккумулятора,  в цепи первоначального возбуждения и стоит лампочка ограничивающая этот ток. На первый взгляд проблема остается — если ротор генератора не крутится, а зажигание включено, то аккумулятор разряжается, но разражается очень маленьким током через лампочку (лампочка горит).  Ток лампочки может гореть несколько дней и это не приведет к полному разряду нормального аккумулятора. 

Очень важное преимущество такой схемы состоит в том, лампочка  не только ограничивает ток разрядки аккумулятора через обмотку возбуждения, но то, что она становится очень полезным индикатором состояния системы генератор — аккумулятор и позволят контролировать процесс зарядки аккумулятора и исправность — неисправность генератора.

 Схема генератора с дополнительными диодами и регулятором напряжения  типа L (D+)

Схема генератора с возбуждением типа L.   Такая схема широко применялась на автомобилях выпуска 90-х годов. ВАЗ 2108-09, ВАЗ 2107 — 05, ВАЗ 2110, 11, 12, «Газель», «Волга» с двигателем 406, Генераторы 372.3701,  9402,3701, 9422, 3701, и многие другие. Генераторы BOSCH, VALEO 

У регуляторов типа L, на точку L подключается выход лампочки для первоначального возбуждения, а когда генератор заработал, то на эту точку приходит напряжение самого генератора, через дополнительный выпрямитель. Такой регулятор считает, что напряжение на выходе дополнительного выпрямителя — это и есть напряжение бортовой сети, поэтому он поддерживает напряжение на выходе генератора, «опираясь» на значение напряжения на точке L. Это получается недостаточно точно.

 Такие регуляторы применялись на многих генераторах 90-х годов для автомобилей Mitsubishi, и их корейских клонах.

У регуляторов SL два входа. Точка L имеет такое же подключение, выполняет туже функцию, но, контрольное  напряжение, относительно которого нужно поддерживать заданное напряжение поступает на точку S.

Это вход с высоким сопротивлением, который тока не потребляет. Он подключается на силовой выход генератора, где напряжение, действительно мало отличается от напряжения бортовой сети. Таким образом, регуляторы SL поддерживают напряжение на выходе генератора более точно, так как контролируют напряжение на самом выходе.  На точке S  при выключенном зажигании должно быть 12 Вольт (связь с аккумулятором). Если цепь оборвана, что иногда бывает, то генератор работает, но держит напряжение примерно на 1 Вольт выше нужного значения и требуется восстановление проводки, чтобы защитить аккумулятор от перезаряда.

Разрядка аккумулятора по цепи S невозможна так как вход S регулятора имеет очень большое сопротивление.

На Российском регуляторе SL  типа 1702.3702 (для  ВАЗ 2108)  неподключение или обрыв точки S, полностью отключает регулятор.

Такое решение использовали BOSCH, Mitsubishi, DELCO COR.  Генераторы БАТЭ для ВАЗ 2110 и для 406-го  двигателя 3202, 3222, были выполнены по этой схеме.

Обмотка, намотанная звездой, имеет среднюю точку, если ее подключить к выпрямителю, то с выпрямителя можно снять больший ток. Для выпрямления тока от средней точки нужно дополнительное плечо диодного моста, то есть нужно еще 2 диода. Таким образом, в том же корпусе и с той же обмоткой, можно получить генератор, который будет мощнее на 10 — 15 процентов, только нужен другой диодный мост, на 8 диодов. Такой генератор поддерживает работу большего числа потребителей, что актуально с увеличением числа электронных схем управления в современных автомобилях.

 

 

Лампочка

Лампочка не только ограничивает ток, но становится простым и очень полезным сигнализатором.

При включении зажигания лампочка загорается, через нее идет ток первоначально возбуждения, это значит, что цепь возбуждения целая и генератор готов к работе.

После запуска двигателя лампочка гаснет – это значит, что генератор заработал.

Если при включении зажигания лапочка не загорелась, то значит, цепь возбуждения не включилась и генератор не заработает.

Если лампочка загорелась, а после запуска двигателя не погасла, то значит, что цепь возбуждения целая, но генератор не заработал, надо искать неисправность, иначе, через два часа машина безнадежно встанет.

Если лампочка загорелась на ходу, то, то значит, генератор перестал работать (например, порвался ремень), двигатель продолжает работать, пока аккумулятор заряжен, но ехать нужно туда, где отремонтируют генератор.

Лампочка так действует потому, что с одной стороны, она подключается к плюсу аккумулятора, а с другой стороны к обмотке возбуждения. При включении замка зажигания, пока генератор стоит, появляется ток через обмотку возбуждения на минус и лампочка горит, показывая, что цепь возбуждения генератора целая. То есть, плюс питания подводится, лампочка целая, проводка до генератора целая, щетки на месте, контакт на кольцах хороший, обмотка ротора целая, регулятор целый, контакт на массу хороший. Как только генератор закрутился, и на выходе дополнительно выпрямителя, появляется плюс, который подействует на лампочку с другой стороны и лампочка погаснет (от плюса к плюсу ток не идет), это и означает, что генератор заработал.

Тусклое свечение лампочки может быть потому, что плохо затянут контакт плюсового вывода генератора, или неисправен диодный мост

Познакомимся с функцией контрольной лампочки генератора более подробно

 

 

Схема генераторов  DENSO, которые применялись на автомобилях Тойота

Схема генератора с регулятором напряжения  типа S IG L

Регуляторы такого типа применялись на генераторах фирмы Денсо для автомобилей Тойота

Регулятор представляет собой микросхему с несколькими навесными элементами.

Силовой транзистор Т2, который работает в ключевом режиме, включает и отключает ток возбуждения.

Транзистор Т1 управляет лампочкой контроля зарядки.

Микросхема работает по более сложной программе, чем регулятор на дискретных элементах, что позволяет упростить схему самого генератора.

Регулятор напряжения имеет разъем S IG L, для внешнего подсоединения, и клеммы для внутреннего подсоединения к цепям генератора B, P, F, E

Назначение выводов внешних

S – подвод напряжения с выхода генератора и аккумулятора для контроля уровня напряжения.

IG- питания цепей регулятора после включения замка зажигания

L — подключение лампочки контроля заряда

Назначение выводов внутренних соединений регулятора

B — подвод тока возбуждения от выхода генератора

P — подвод переменного напряжения с фазы генератора

F — отвод тока возбуждения от ротора

E – земля

 

Работа схемы

В выключенном состоянии к точке В подведен плюс от аккумулятора, но транзистор Т2 полностью закрыт и тока по цепи возбуждения нет. Плюс действует на точке S, но это вход с очень высоким сопротивлением и тока не потребляет.

При включении зажигания плюс от аккумулятора попадает на точку IG и на точку L через лампочку.

Микросхема DD получает питание по цепи IG. Транзистор Т1 открывается и лампочка загорается, сигнализируя о том, что генератор готов к работе, но еще не работает.

Микросхема DD переводит транзистор Т2 в импульсный режим, с такой скважностью, что среднее значение тока оказывается достаточным для подвозбуждения генератора. От плюса, через точку В, в обмотку возбуждения идет ток  через транзистор Т2. Ток очень маленький и противодействие ротора вращению двигателя получается очень слабым, что облегчает запуск двигателя и создает более щадящий режим для аккумулятора и стартера.

Стартер начинает раскручивать двигатель. Ротор вращается и подмагниченный начальным током возбуждения, начинает генерировать в обмотке генератора переменное напряжение.

Возникшее переменное напряжение, с одной из обмоток попадает на точку Р регулятора, и на соответствующую ножку микросхемы. Сигнал о появлении переменного напряжения, означает, что двигатель завелся и можно включать генератор. Микросхема переводит  транзистор Т2, на такую длительность импульсов при которой ток возбуждения  становится достаточно большим, чтобы генератор вышел на рабочее напряжение и начал отдавать достаточную мощность. Ток возбуждения (показано стрелками) от плюса, через точку В, идет в обмотку возбуждения, и через транзистор на Т2 на массу.  Ротор сильно намагничивается и генератор начинает работать. Транзистор Т1 получает от микросхемы команду на закрытие и лампочка гаснет, что подтверждает нормальный режим работы генератора.

Далее задача регулятора состоит в поддержании рабочего уровня напряжения на выходе генератора.

Генератор все время поднимает напряжение и стремится превысить его нормальный уровень. Регулятор ограничивает напряжение на заданном уровне. Микросхема DD обеспечивает широтно – импульсное управление (ШИМ – регулятор). Среднее значение тока, протекающего в обмотку зависит от длительности импульса открытого состояния ключевого транзистора Т2. Когда напряжение на выходе генератор возрастает, то микросхема, получая значение этого напряжения на точку S, уменьшает длительность открытого состояния транзистора, и среднее значение тока возбуждения снижается, напряжение на выходе генератора снижается, далее, длительность импульсов вновь увеличивается и напряжение возрастает, таким образом, поддерживается заданный уровень выходного напряжения с достаточно высокой точностью — около 14, 4 Вольта

Диод, шунтирующий обмотку возбуждения, как обычно, создает контур для ЭДС самоиндукции, при резком размыкании тока возбуждения, что снижает импульс высокого напряжения, которое может пробить выходной транзистор Т2

 

Схема генератора не нуждается в дополнительном выпрямителе для питания обмотки возбуждения.

Схема регулятора напряжения защищает аккумулятор от разрядки через обмотку возбуждения, в случае если зажигание включено, а двигатель не работает.

Как и в схеме с дополнительным выпрямителем, схема потребляет ток на свечение лампочки – сигнализатора разрядки и еще потребляет небольшой ток через обмотку возбуждения, необходимый для первоначального возбуждения, этот ток определяется импульсным режимом транзистора Т2 , его среднее значение оказывается достаточно мало, чтобы не оказывать существенное влияние на разрядку аккумулятора, поэтому в автомобиле, который не завелся, долгое время может быть включено зажигания без риска разрядки аккумулятора через генератор.

 

На данном рисунке показана схема генераторов на 100 и 110 Ампер, для генераторов меньшей мощности достаточно обычного диодного моста с шестью диодами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

принцип работы и схема подключения

Любой автомобиль располагает собственной бортовой автономной электрической сетью со всеми присущими элементами, источником энергии, накопителем и потребителями. Каждый из узлов функционально закончен, они объединяются электрической проводкой, а параметры сети чётко стандартизованы благодаря накопленному опыту производства автомобильного электрооборудования.

Содержание статьи:

  • 1 Для чего в машине нужен генератор
  • 2 Виды
  • 3 Устройство
    • 3.1 Генератор постоянного тока
    • 3.2 Генератор переменного тока
  • 4 Схема подключения
  • 5 Принцип работы
  • 6 Основные неисправности
  • 7 Как проверить автомобильный генератор

В качестве источника питания электроники выступает генератор, о котором и пойдет речь в этой статье.

Для чего в машине нужен генератор

Вся энергия в бортовую сеть поступает от двигателя внутреннего сгорания. Механическая энергия вращения его коленчатого вала должна быть преобразована в электрическую. Эту роль и выполняет генератор.

Читайте также: Топливный фильтр, виды, месторасположение и замена

В типовом варианте его ротор снабжён шкивом, на который надет гибкий ремень, передающий вращения от аналогичного шкива на носке коленчатого вала. Параллельно от того же ремня могут приводиться и прочие навесные агрегаты, но традиционно он именуется генераторным.

На выходе генератора образуется электрическое напряжение, способное поддерживаться в заданном диапазоне при отдаче любого тока от нуля до максимума, лимитированного номинальной мощностью.

Эту мощность прибор отдаёт при максимально допустимых оборотах ротора, привязанных к предельной частоте вращения коленвала путём подобранного передаточного соотношения ременного привода.

Виды

Выделяется два основных типа автомобильных генераторов:

  • Постоянного тока, вырабатывается напряжение определённой полярности уже непосредственно на обмотках;
  • Переменного тока, поскольку требуется всё же постоянное напряжение, то генератор снабжён внутренним полупроводниковым выпрямителем.

В настоящее время используется только второй тип, поскольку он обладает бесспорными преимуществами, причём его обмотки выдают трёхфазное напряжение, как легче поддающееся сглаживанию пульсаций и позволяющее эффективнее использовать массогабарит прибора.

Что находится внутри данного прибора разберем ниже.

Устройство

Внешне все генераторы на первый взгляд похожи, но те кто знаком с электротехникой легко определит с каким прибором имеет дело. Ситуация упрощается тем, что машины постоянного тока использовались только на совсем уж реликтовых автомобилях, давно снятых с производства.

Генератор постоянного тока

В состав динамомашины постоянного тока входят:

  • корпус;
  • обмотки возбуждения на статоре, неподвижно закреплённом в корпусе;
  • силовые обмотки на вращающемся якоре;
  • щёточный узел с меднографитовыми или угольными щётками, снимающими ток с коллектора вращающегося якоря;
  • регулятор напряжения, стабилизирующий выход путём регулирования тока возбуждения в обмотках электромагнитов статора;
  • приводной шкив на валу якоря;
  • подшипники, в которых вращается вал якоря.

Для создания приемлемой мощности на выходе весь агрегат приходилось выполнять массивным и металлоёмким, поэтому с появлением качественных выпрямительных полупроводниковых приборов генераторы постоянного тока на автомобилях применять перестали.

Генератор переменного тока

Принципиально он устроен похоже, но выходная мощность образуется многофазными обмотками статора, выполненными толстым проводом и не нуждающимися в мощных и ненадёжных токосъёмниках.

Состав оборудования тоже похож:

  • корпус с кронштейнами крепления и электрическими клеммами;
  • обмотки статора, установленные в корпусе, могут извлекаться при рассоединении его половин;
  • ротор с полюсами из мягкого электротехнического железа, медными обмотками и коллектором;
  • щёточный узел, где обычно устанавливается пара угольных щёток и встраивается интегральный полупроводниковый регулятор напряжения, через который на щётки поступает питание возбуждения;
  • блок выпрямителя, где расположен трёхфазный мост из шести силовых вентилей (диодов) и трёх относительно маломощных дополнительных диодов питания обмотки возбуждения, число диодов может отличаться в специфически устроенных современных конструкциях;
  • подшипники на валу ротора;
  • выходные разъёмы, силовой и управляющий, вторым силовым контактом выступает металлический корпус генератора;
  • шкив привода и крыльчатка принудительного охлаждения.

Весь конструктив крепится к передней части двигателя для удобной организации ременного привода от шкива коленвала. Часто отклонением генератора в сторону производится регулировка натяжения ремня, в тех случаях, когда более сложная конструкция привода навесных агрегатов не подразумевает наличие отдельного натяжителя с роликом.

Схема подключения

Схема подразделяется на силовую и управляющую цепи. Мощный выход генератора через силовой разъём из закреплённого гайкой на шпильке провода большого сечения соединяется непосредственно с плюсовой клеммой аккумуляторной батареи.

Тонкий управляющий провод чаще всего просто соединён с цепью зажигания через контрольную лампочку. Встречаются и иные схемы, когда лампочка имеет собственное управление от специально предназначенного контакта на корпусе.

Принцип работы

Перед началом работы в автомобиле включается зажигание, и на управляющий контакт генератора поступает напряжение через лампочку. Поскольку энергию генератор в этот момент не вырабатывает, то напряжение на контакте отсутствует, и лампочка оказывается под потенциалом аккумуляторной батареи. Индикатор светится, через обмотку возбуждения протекает начальный ток.

После запуска мотора вращающееся поле обмотки возбуждения на роторе создаёт ответную индукцию в обмотках статора и генератор начинает вырабатывать электроэнергию. Дополнительные диоды поднимают напряжение на контакте лампочки, перепад на ней отсутствует, и она перестаёт светиться, сигнализируя, что всё в порядке, генератор работает.

Электронная схема в реле-регуляторе щёточного узла отслеживает выходное напряжение, увеличивая или уменьшая ток возбуждения, таким образом поддерживая выход на заданном уровне, обычно это 14-15 вольт, в зависимости от типа применённого аккумулятора и его температуры.

Батарея под таким напряжением перестаёт отдавать ток и переходит в режим заряда или удержания, выполняя роль дополнительного фильтрующего элемента, поскольку напряжение генератора пульсирует с частотой трёхфазного выпрямителя.

Если включено много потребителей, а обороты двигателя малы, прибор не в состоянии отдавать требуемую мощность, напряжение уменьшается, а часть потребителей начинает питаться от аккумулятора.

При добавлении оборотов генератор увеличивает мощность, питает потребителей, а избыток её идёт на зарядку аккумулятора. Если батарея заряжена, а мощность избыточна, то реле-регулятор уменьшает ток возбуждения, чтобы не допускать опасного роста напряжения в сети.

Основные неисправности

Проявлением неисправностей становится выход напряжения в сети из заданных пределов, а также посторонние звуки из работающего генератора.

Причины могут быть различными:

  • износ щёточного узла, он заменяется вместе с интегральным реле;
  • глубокий износ коллектора щётками, если его уже невозможно устранить шлифовкой, меняются контактные кольца или якорь в сборе;
  • выход из строя подшипников якоря, их несложно заменить после полной или частичной разборки генератора;
  • выгорание диодов выпрямителя, в настоящее время их не меняют поодиночке, замене подлежит весь диодный мост;
  • короткие межвитковые замыкания или обрывы в якоре или статоре, соответствующие детали меняются;
  • обгорание или коррозия контактов, их тоже можно заменить или очистить.

Не относящейся непосредственно к генератору, но частой неисправностью является сильный свист при добавлении оборотов двигателя. Это свидетельствует о проскальзывании ремня на приводных шкивах, натяжение можно отрегулировать, но лучше такой ремень заменить.

При снятии генератора для ремонта целесообразно сразу поменять диодный мост, подшипники и реле-регулятор со щётками. Так отремонтированный прибор обретёт максимально возможную надёжность, хотя полную гарантию может дать только новый генератор от солидного производителя.

Как проверить автомобильный генератор

В идеале генератор надо проверять на стенде, где он будет раскручен до номинальных оборотов и максимально нагружен с проверкой отдаваемой в таком режиме мощности.

Но можно приблизительно проверить его и не снимая с автомобиля.

  1. К выходной клемме генератора подключается цифровой вольтметр (например, в составе мультиметра).
  2. Двигатель запускается. Показания вольтметра должны увеличиться до номинальных 14 – 14,5 вольт. Исключением станет случай, когда батарея сильно разряжена, тогда напряжение будет расти постепенно, по мере заряда.
  3. Двигатель выводится на средние или высокие обороты, а в автомобиле включаются фары и другие мощные потребители, общей потребностью не превышающие полную мощность генератора. Напряжение должно остаться стабильным, значит генератор отдаёт свою положенную мощность.
  4. От генератора не должно раздаваться характерных воющих звуков изношенных подшипников. При появлении сомнений достаточно снять ремень и прокрутить шкив вручную. Ротор должен вращаться абсолютно плавно, без вибраций и люфтов.

Новый генератор очень надёжен и первые проблемы могут возникнуть лишь после пробега в 100-150 тысяч километров. Но часто эти приборы ходят значительно больше, особенно с промежуточной заменой щёточного узла.

4 изученные схемы твердотельных автомобильных генераторов переменного тока

4 простые схемы автомобильных регуляторов тока, описанные ниже, созданы в качестве непосредственной альтернативы любому стандартному регулятору и, хотя они разработаны в основном для динамо-машины, они будут одинаково эффективно работать с генератором переменного тока.

Если проанализировать функционирование традиционного регулятора напряжения автомобильного генератора переменного тока, мы найдем удивительным, что этим типам регуляторов часто доверяют так, как они есть.

В то время как большинство современных автомобилей оснащены полупроводниковыми регуляторами напряжения для регулирования выходного напряжения и тока генератора, вы все еще можете найти бесчисленное множество более ранних автомобилей, оснащенных регуляторами напряжения электромеханического типа, которые могут быть потенциально ненадежными.

Как работает электромеханический регулятор напряжения автомобиля

Стандартное функционирование электромеханического регулятора напряжения автомобильного генератора может быть следующим: лампа.

В этом положении якорь динамо остается не соединенным с аккумулятором, так как его мощность меньше по сравнению с напряжением аккумулятора, и аккумулятор начинает разряжаться через него.

Когда скорость двигателя начинает увеличиваться, выходное напряжение динамо-машины также начинает расти. Как только оно превышает напряжение батареи, включается реле, соединяющее якорь динамо-машины с батареей.

Инициирует зарядку аккумулятора. В случае, если мощность динамо-машины возрастает еще больше, при напряжении около 14,5 В активируется дополнительное реле, которое отключает обмотку возбуждения динамо-машины.

Ток возбуждения падает, а выходное напряжение начинает падать вплоть до отключения этого реле. Реле в этот момент постоянно включается и выключается, поддерживая выход динамо на уровне 14,5 В.

Это действие защищает аккумулятор от перезарядки.

Также имеется 3-е реле, обмотка катушки которого включена последовательно с выходом динамо-машины, через которое проходит весь выходной ток динамо-машины.

Когда безопасный выходной ток динамо-машины становится опасно высоким, возможно из-за переразряженной батареи, эта обмотка активирует реле. Это реле теперь отсоединяет обмотку возбуждения динамо-машины.

Функция гарантирует, что как фундаментальная теория, так и конкретная схема предлагаемого регулятора напряжения тока автомобиля могут иметь разные характеристики в зависимости от конкретных габаритов автомобиля.

1) Использование силовых транзисторов

В указанной конструкции реле отключения заменено D5, который смещается в обратном направлении, как только выходное напряжение динамо-машины падает ниже напряжения батареи.

Из-за этого аккумулятор не может разрядиться в динамо-машину. Если зажигание включено, обмотка возбуждения динамо получает ток через контрольную лампу и T1.

Диод D3 встроен во избежание протекания тока от катушки возбуждения из-за уменьшенного сопротивления якоря генератора переменного тока. По мере увеличения скорости двигателя выходная мощность динамо-машины пропорционально возрастает, и она начинает создавать собственный ток возбуждения с помощью D3 и T1.

По мере увеличения напряжения катодной стороны D3 сигнальная лампа постепенно тускнеет, пока не погаснет.

Когда выходное напряжение динамо достигает 13-14 В, аккумулятор снова начинает заряжаться. IC1 работает как компаратор напряжения, который отслеживает выходное напряжение динамо-машины.

По мере увеличения выходного напряжения динамо-машины напряжение на инвертирующем входе операционного усилителя сначала больше, чем на неинвертирующем входе, поэтому на выходе IC поддерживается низкий уровень, а T3 остается выключенным.

Как только выходное напряжение становится выше 5,6 В, инвертирующее входное напряжение регулируется и контролируется на этом уровне с помощью D4.

Когда выходное напряжение превысит заданный наивысший потенциал (установленный с помощью P1), неинвертирующий вход IC1 становится выше, чем инвертирующий вход, в результате чего выход IC1 становится положительным. Это активирует Т3. который выключает T2 и T1, подавляя ток динамо-поля.

Теперь ток возбуждения динамо-машины затухает, и выходное напряжение начинает падать, пока компаратор снова не вернется в норму. R6 обеспечивает гистерезис в несколько сотен милливольт, что помогает схеме работать как импульсный стабилизатор. T1 либо включается сильнее, либо отключается, так что рассеивает довольно небольшую мощность.

На текущее регулирование влияет T4. Как только ток через резистор R9 превысит выбранный наивысший уровень, падение напряжения вокруг него приведет к включению Т4. Это повышает потенциал на неинвертирующем входе IC1 и изолирует ток возбуждения динамо-машины.

Значение, выбранное для R9 (0,033 Ом/20 Вт, состоящее из 10 резисторов 0,33 Ом/2 Вт, включенных параллельно), подходит для получения оптимального выходного тока до 20 А. Если желательны более высокие выходные токи, R9 стоимость может быть уменьшена соответствующим образом.

Выходное напряжение и ток устройства должны быть зафиксированы путем соответствующей настройки P1 и P2 в соответствии со стандартами исходного регулятора. T1 и D5 должны быть установлены на радиаторы и строго изолированы от корпуса.

2) Упрощенный регулятор напряжения и тока автомобильного генератора

На следующей диаграмме показан еще один вариант схемы регулятора напряжения и тока твердотельного автомобильного генератора с использованием минимального количества компонентов.

Обычно, когда напряжение батареи ниже уровня полного заряда, выход регулятора IC CA 3085 остается выключенным, что позволяет транзистору Дарлингтона находиться в проводящем режиме, что поддерживает возбуждение катушки возбуждения и работу генератора переменного тока.

Поскольку микросхема CA3085 используется здесь как базовый компаратор, когда батарея заряжается до полного уровня заряда, может достигать 14,2 В, потенциал на выводе № 6 микросхемы изменяется на 0 В, отключая питание катушки возбуждения. .

Из-за этого ток от генератора падает, что препятствует дальнейшей зарядке аккумулятора. Таким образом, аккумулятор защищен от перезарядки.

Теперь, когда напряжение батареи падает ниже порога CA3085 pin6, выходной сигнал снова становится высоким, заставляя транзистор открываться и питать катушку возбуждения.

Генератор начинает питать аккумулятор, так что он снова начинает заряжаться.

Перечень деталей

3) Транзисторная схема регулятора автомобильного генератора переменного тока

На приведенной ниже схеме полупроводникового регулятора тока генератора переменного тока V4 сконфигурирован как транзистор с последовательным проходом, который регулирует ток в поле генератора. Этот транзистор вместе с двумя 20-амперными диодами закреплены на внешнем радиаторе. Любопытно видеть, что рассеяние V1 на самом деле не очень велико даже при максимальном токе возбуждения, а всего лишь в пределах 3 ампер.

Однако вместо среднего диапазона, при котором падение напряжения на поле соответствует падению напряжения на транзисторе V1, возникает максимальное рассеивание не более 10 Вт.

Диод D1 обеспечивает защиту проходного транзистора V4 от индуктивных всплесков, генерируемых катушкой возбуждения в любое время при выключении зажигания. Диод D2, который пропускает весь ток возбуждения, обеспечивает дополнительное рабочее напряжение для управляющего транзистора V2 и гарантирует отключение проходного транзистора V4 при высоких фоновых температурах.

Транзистор V3 работает как драйвер для V4, а колебание тока базы от 3 мА до 5 мА на этом транзисторе позволяет переключать V4 от полного «включено» до полного «выключено».

Резистор R8 отводит ток при экстремальных температурах. Конденсатор C1 необходим для защиты от колебаний регулятора из-за петли с высоким коэффициентом усиления, которая создается вокруг системы. Здесь рекомендуется использовать танталовый конденсатор для повышения точности.

Первичный элемент управляющей цепи заключен в симметричный дифференциальный усилитель, состоящий из транзисторов V1 и V2. Особое внимание было уделено компоновке этого регулятора генератора переменного тока, чтобы убедиться в отсутствии проблем с температурным дрейфом. Для этого большинство соединенных резисторов должны быть проволочными.

Потенциометр управления напряжением R2 заслуживает особого внимания, так как он никогда не должен отклоняться от своих настроек из-за вибрации или экстремальных температурных условий. 20-омный потенциометр, использованный в этой конструкции, идеально подходил для этой программы, однако почти любой хороший потенциометр с проволочной обмоткой в ​​роторном стиле мог бы подойти. В этой конструкции регулятора тока напряжения автомобильного генератора следует избегать прямолинейных вариантов триммеров.

4) IC 741 Автомобильный генератор переменного тока Регулятор напряжения тока Цепь зарядного устройства

Эта схема обеспечивает полупроводниковое управление зарядкой аккумулятора. Обмотка возбуждения генератора сначала возбуждается через лампочку зажигания, как и в традиционном методе.

Ток, проходящий через клемму WL, проходит через Q1 к клемме F и, наконец, по катушке возбуждения. Как только двигатель включен, ток от динамо-машины автомобиля проходит через D2 к Q1. Контрольная лампа зажигания гаснет, так как напряжение на клемме WL больше, чем у аккумулятора. Ток также проходит через D5 к аккумулятору.

В этот момент IC1, настроенный как компаратор, определяет напряжение батареи. Когда это напряжение на неинвертирующем входе становится выше, чем на инвертирующем входе (зафиксировано на уровне 4,6 В через стабилитрон D4), на выходе операционного усилителя появляется высокий уровень.

Затем ток проходит через D3 и R2 к базе Q2 и мгновенно включает ее. Это действие в результате заземляет базу Q1, отключая ее и снимая ток, подаваемый на обмотку возбуждения. Выходная мощность генератора теперь падает, что приводит к соответствующему падению напряжения аккумулятора.

Эта процедура гарантирует, что напряжение батареи всегда поддерживается постоянным и никогда не допускается перезарядка. Напряжение полного заряда аккумулятора можно настроить с помощью RV1 примерно до 13,5 вольт.

В холодную погоду при запуске автомобиля напряжение аккумуляторной батареи может значительно упасть. Как только двигатель зажигается, внутреннее сопротивление батареи также становится довольно низким, что вынуждает ее потреблять слишком много тока от генератора переменного тока и, таким образом, приводит к возможному износу генератора переменного тока. Чтобы ограничить это высокое потребление тока, резистор R4 введен в первичную силовую клемму от генератора переменного тока.

Сопротивление R4 выбрано таким образом, чтобы при максимально возможном токе (обычно 20 ампер) на нем генерировалось напряжение 0,6 В, что приводит к включению транзистора Q3. В момент активации Q3 ток проходит по линии электропередачи через резистор R2 к базе Q2, включая ее, которая затем отключает Q1 и прекращает подачу тока на обмотку возбуждения. Из-за этого мощность динамо-машины или генератора теперь падает.

Никаких модификаций оригинальной проводки генератора в автомобиле не требуется. Схема может быть помещена в старый блок регулятора, Q1, Q2 и D5 должны быть присоединены к радиатору соответствующего размера.

Автомобильный генератор и его особенности

В рамках данной статьи поговорим об особенностях принципа устройства автомобильных генераторов. Для автовладельцев, разбирающихся в теме, эта статья будет не интересна. Но для тех, кто интересуется автомобильными генераторами с точки зрения применения, эта информация может оказаться полезной.

В современных автомобилях в качестве генераторов используются синхронные трехфазные электрические машины переменного тока, в которых в выпрямителе применена схема Ларионова.

Чтобы генератор после запуска двигателя отдавал ток в нагрузку, необходимо подать питание на катушку возбуждения. Это происходит при повороте ключа зажигания в рабочее положение.

Ток в обмотке возбуждения регулируется регулятором напряжения, который может быть выполнен в виде отдельного узла или интегрирован в щеточный узел генератора. В подавляющем большинстве современных генераторов стабилизатор напряжения (СН) питается от отдельной выпрямительной секции.

Среди других генераторов автомобильный генератор выделяется рядом особенностей. Во-первых, автомобильный генератор, хотя и вырабатывает постоянный ток, по сути является генератором переменного тока, который затем выпрямляется диодным мостом и преобразуется в постоянный ток.

Это решение очень популярно, тот же генератор переменного тока из асинхронного двигателя можно превратить в генератор постоянного тока, достаточно добавить диодный выпрямитель.

Выпрямители переменного тока называются вентильными генераторами постоянного тока. К таким генераторам относится автомобильный генератор.

Выходное напряжение автомобильного генератора постоянное

Одной из отличительных особенностей автомобильного генератора является то, что напряжение на его выходных клеммах поддерживается в узком диапазоне с помощью специального стабилизатора, называемого регулятором напряжения. Но это не является чем-то исключительным для электромобилей.

Стабилизаторы напряжения можно встретить в комплектации многих источников бесперебойного питания, в том числе и среди тех, что берут энергию для своих аккумуляторов от механических генераторов тех же домашних ГЭС или от солнечных батарей.

Основное отличие автомобильного генератора в том, что он получает механическую энергию через ремень от коленчатого вала двигателя внутреннего сгорания, частота вращения которого вовсе не постоянна, она зависит от режима работы автомобиля в данный момент, и не связано с потребностями потребителей постоянного тока.

Вот и получается, что задача генератора и его электроники — уметь заряжать автомобильный аккумулятор и снабжать потребителей стабилизированным напряжением, независимо от того, какая сейчас скорость якоря — напряжение должно оставаться в узком коридоре в районе 14 вольт.

Если по какой-то причине напряжение выйдет за пределы диапазона стабилизации, зарядный ток аккумулятора может стать чрезвычайно высоким, а электролит просто выкипит.

Это явление не является чем-то беспрецедентным, с ним сталкивались многие автолюбители, когда внезапно вышел из строя регулятор напряжения на генераторе — электролит в аккумуляторе в этом случае быстро выкипает.

Если напряжение от генератора слишком низкое, аккумулятор преждевременно разрядится. С этой проблемой также сталкивались многие автолюбители.

Итак, стабильное выходное напряжение – обязательное условие корректной работы автомобильного генератора. Но этого не так просто добиться. Диапазон изменения частоты вращения ротора генератора в автомобиле достаточно широк. На холостом ходу это порядка 800 — 1200 оборотов в минуту, а в момент хорошего разгона — до 5000 и даже до 6000 оборотов в минуту. , смотря какая машина.

Скоростная характеристика автомобильного генератора

Таким образом, поскольку напряжение автомобильного генератора поддерживается практически постоянным благодаря регулятору напряжения, он имеет свою вольт-амперную характеристику (ТСХ), т.к. при разных скоростях ротора ток нагрузки разный. Напряжение постоянное, но чем выше скорость — тем выше ток, а чем ниже скорость — тем меньше ток с силовых клемм генератора.

Примечательно тем, что автомобильный генератор имеет ограничение по току, а значит имеет свойство самоограничения. Это означает, что при достижении током определенного предельного значения, как бы дальше не повышалась скорость, ток уже не будет увеличиваться, он просто не сможет этого сделать.

Токоскостаная характеристика (ТСХ) автомобильного генератора снимается по методике, принятой в качестве международного стандарта. Его (характеристику) снимают при испытательной эксплуатации генератора на стенде в паре с полностью заряженной батареей такой номинальной емкости, которая в ампер-часах составляет половину (50%) номинального тока генератора в амперах. На характеристике находятся характерные важные точки: n0, nrg, nн, nmax.

Начальная скорость ротора n0 — это теоретическая скорость ротора без нагрузки. Так как характеристику начинают снимать начиная с силы тока 2 ампера, то эту точку находят путем экстраполяции характеристики на пересечение с горизонтальной осью вращения.

Минимальная рабочая частота генератора nrg принимается соответствующей холостому ходу коленчатого вала. Это примерно от 1500 до 1800 об/мин для ротора генератора. Ток при заданной частоте, как правило, составляет от 40 до 50% от номинального значения для данного генератора. Этого тока должно хватить для питания минимального количества жизненно важных потребителей в автомобиле.

Номинальные обороты ротора генератора nн — это именно та частота, при которой вырабатывается номинальный ток In, она не должна быть меньше номинального значения по паспорту.

Максимальная частота вращения ротора генератора nmax – это частота вращения ротора, при которой максимальный ток отдается генератором, значение которого не сильно отличается от номинального значения испытуемого генератора.

Для генераторов отечественного производства ранее было принято указывать номинальный ток при 5000 об/мин. Также указывалась номинальная частота nр для номинального тока генератора Ip, равного двум третям номинального тока. Этот расчетный режим соответствовал такому режиму работы генератора, когда его элементы не сильно нагревались. Все характеристики снимались при напряжении 14 или 13 вольт.

Самовозбуждение автомобильного генератора и КПД

Автомобильный генератор обязан самовозбуждаться при частоте вращения его ротора ниже частоты, когда коленчатый вал работает на холостом ходу. Испытание проводят на стенде, где должно происходить самовозбуждение при подключении генератора к аккумулятору с контрольной лампой.

Возможности автомобильного генератора с энергетической точки зрения характеризуются величиной его КПД. Чем выше КПД, тем меньше мощности берется от двигателя внутреннего сгорания для получения такой же полезной мощности в виде электроэнергии.

КПД генератора зависит в основном от конструктивных особенностей конкретного изделия: какова толщина пластин в статоре и толщина набора, насколько хорошо пластины изолированы друг от друга (насколько малы токи Фуко) , какое сопротивление обмоток статора и ротора, какая ширина контактных колец ротора, какое качество щеток и подшипников? И т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *