Плохое заземление: Заземление в квартире: что и как нужно заземлять в квартире

Содержание

Заземление. Что это такое и как его сделать (часть 1) / Хабр

Мой рассказ будет состоять из трёх частей.

1 часть. Заземление

(общая информация, термины и определения)
2 часть. Традиционные способы строительства заземляющих устройств

(описание, расчёт, монтаж)
3 часть. Современные способы строительства заземляющих устройств

(описание, расчёт, монтаж)
В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.



1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения

Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление

Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты

Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом

В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления

В3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:


Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:


Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:


Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).

При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.


Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).

Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.


Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

Продолжение:


Алексей Рожанков, специалист технического центра «ZANDZ.ru»

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
    Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
  • Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
  • Собственный опыт и знания

Розетки без заземления — можно или опасно?

При переезде в новый дом Вы начинаете жизнь с чистого листа. Постепенно все осматриваете и осваиваете, включаете электротехнику, и даже не задумываетесь над тем, какая опасность может Вас подстерегать, ведь розетки могут оказаться незаземленными. Это распространенная проблема вторичного жилья, особенно в старых домах с двухжильной проводкой. Советские розетки не заземлялись, и многие продолжают ими пользоваться.

Но, времена меняются, как и требования к безопасности. Сейчас, когда большее количество электрооборудования создает более высокую нагрузку на сеть, устаревшие розетки стали опасными.

Чем опасно отсутствие заземления

Все приборы время от времени выходят из строя и поломки часто незаметны. На фазе может повредиться изоляция или «отвалиться» провод, коснувшись металлического корпуса, который окажется под напряжением. Представьте, что Вы касаетесь к нему рукой, стоя на мокром полу. Вас тут уже ударит током, что может закончиться серьезными травмами или несчастным случаем. Притом стиралка может быть даже выключенной.

Только подумайте, Вы каждый день пользуетесь электрочайником, бойлером, пылесосом, кондиционером, электроплитой и везде Вы подвержены потенциальной опасности. Но, если розетка будет заземленной, электричеству будет куда вытекать, и Вас не ударит.

Хуже, когда заземления вообще нет

На улице гроза и тут вдруг молния попадает в столб ЛЭП за несколько сотен метров от Вашего дома. Сверхмощный разряд проходит по мокрому столбу в землю, но из-за электромагнитного поля в линиях электропередач возникнет мощный импульс. Токовый разряд в тысячи ампер по проводам проникнет в дом и уничтожит всю включенную в розетки электронику, даже если она в это время не будет работать. Молнии даже не обязательно ударять вблизи дома. Она может поразить столб линий электропередач за километр от Вас и мощности импульса хватит, чтобы вмиг уничтожить все, на что Вы зарабатывали непосильным трудом.
Единственный вариант защититься — поставить ограничитель перенапряжений — УЗИП (разрядник). Это модуль, подключенный с одной стороны к фазе, а с другой к заземлению. Внутри него химический состав — диэлектрик, который под высоким напряжением превращается в проводник. Когда в сети возникает высокомощный импульсный разряд, УЗИП безопасно пропускает его в землю.

На столбах и в щитках часто стоят грозоразрядники, но они снимают только часть опасного потенциала. После них по сети протекает импульс до 100кА. Чтобы уменьшить его мощность потребуются модульные УЗИПы. Они делятся на классы:

  • Класс B — снимает разряд от 50кА до 100кА, ставится в щитке многоквартирного дома;
  • Класс С — снимает от 15кА до 40 кА, устанавливается в лестничном или подъездном ГРЩ;
  • Класс D — «срезает» разряды до 15кА, предназначен для квартирного щитка.

Если на пути грозового импульса к Вашему дому будут установлены все три класса, то Ваша сеть будет на 100% защищена. Вы сможете не боясь смотреть телевизор в грозу или работать за компьютером. Но, если «земля» отсутствует, то Вы не сможете поставить разрядники и во время грозы будете беззащитны.

Почему в доме отсутствует заземление?

Новые СНиПы требуют обязательное его наличие в каждой сети, потому во всех новостройках сеть заземлена, что строго проверяется. В советские времена такого жесткого требования не было, потому оно часто игнорировалось. В старых квартирах, построенных до 1980-х годов, обычно проложена двухжильная проводка, где заведена фаза и PEN-проводник (зануленная «земля»).
Это так называемая система TN-C. В ней все токовые утечки идут в нейтраль и их нельзя вычислить, соответственно сеть больше подвержена авариям. Как результат, больше вероятность возгорания проводки или возникновения пожара, из-за чего такая система считается небезопасной и запрещена современными нормами.

Историческая справка: После Второй мировой войны европейские страны приняли решение модернизировать электросети, проложив в дом третий проводник — «землю», что стоило немало средств и времени. СССР и ОВД отказались от такого решения. Как результат, страны СНГ сейчас на первом месте в Европе по количеству бытовых пожаров из-за аварий в сети.

Если Вы заселяетесь в квартиру советской постройки, не поленитесь заглянуть в подъездный щиток. Там должна быть PE-шина, подключенная желто-зеленым проводом. При отсутствии Вам придется прокладывать «землю» в квартиру индивидуально. Как вариант, можете скооперироваться с соседями, собрать деньги и провести в подъездный ГРЩ. Это выйдет гораздо дешевле.

Если в подъездном ГРЩ стоит PE-шина, и квартира к ней подключена, не лишним будет проверить работоспособность. Из-за того, что опасные утечки тока обычно бывают в электроприборах, диагностику стоит начать с розеток.

Как проверить розетки

Осмотрите на наличие заземляющих контактов. Обычно они установлены сбоку перпендикулярно к отверстиям для вилки. Устаревшие розетки целесообразно заменить на новые — это не так дорого.

Розетка без заземления допускается только для маломощных устройств. Настольная лампа или подзарядка для телефона идет с плоской штепсельной вилкой без боковых контактов. Но, в ванной и для мощных электроприборов должно быть заземление.

Даже если Вы видите розетку с заземляющими контактами — это не говорит, о том что она безопасная. Ее мог поставить какой-нибудь электрик-халтурщик, если у него не было другой. Это довольно распространенный случай. Чтобы удостовериться в обратном, придется разобрать и посмотреть, что там внутри. Отключите питание в щитке, и открутите винтик посредине разъема. Далее снимите корпус с рамкой и посмотрите, как соединены контакты. Розетка подключается тремя проводами: фаза — коричневым или черным, нейтраль — синим, и «земля» желто-зеленым, ведущим к боковым контактам. Если Ваша схема подключения отличается от приведенной выше, значит что-то не так. Отсутствие заземления в проводке говорит о том, что ее придется переделывать. Необходимо заменить двухжильный кабель на трехжильный.

Иногда боковые контакты соединены с нейтралью перемычкой — так называемое «зануление», что тоже неправильно. Данный факт уже говорит о некомпетентности электрика, монтируемого розетку. Если он прокладывал всю проводку, вероятно это не единственное нарушение правил безопасности. Стоит осмотреть всю домашнюю сеть.

Если проигнорировать, при утечке поврежденное место начнет искриться и коротить. В результате возникнет возгорание, начнет плавиться изоляция, пластик, и огонь перекинется на легковоспламеняющиеся материалы. Опять-таки это не зависит от того, работает ли электроприбор, и пожар может начаться, даже при Вашем отсутствии.

Зануление допускается только в общей щитовой или на подстанции. После подъездного щитка зануление делать опасно. Если «отвалится» PEN-проводник, на него попадет фаза, и корпус электрооборудования окажется под напряжением. Это опасно, как ударом тока, так и возгоранием.

Чисто теоретически, допускается применение «земли» в качестве нейтрали, но не наоборот.

Снимите перемычку и старайтесь не пользоваться этой розеткой, пока не переделаете проводку. Даже если все три контакта подключены правильно, не факт, что все работает исправно. Потому, нужна дополнительная проверка.

Диагностика сетевого заземления

Наличие PE — шины в щитке и характерного желто-зеленого провода не всегда свидетельствует о том, что оно действительно работает.

Все зависит от состояния металлического контура, закопанного в землю. Если проводка делалась давно, вероятно металл уже «съела» ржавчина или ослаб контакт с контуром. Еще частая причина неисправности — человеческая халатность и недальновидность. Чтобы частный дом приняли в РЭС — главное наличие ввода заземления в дом, но по факту его никто никогда не проверяет, потому часто делался муляж, в щиток заводился обычный кусок кабеля, ни к чему не ведущий.

Исходя из потенциальной опасности, проверьте качество PE-контактов. РЭС для этого применяет дорогостоящее оборудование, которое покупать для себя нецелесообразно. Вместо него лучше воспользуйтесь более дешевыми, но эффективными способами.

Проверка карманным мультиметром

Вы осмотрели розетку, в ней все три контакта подключены правильно. Теперь включите напряжение на щитке.

Отверткой-пробником проверьте, в каком из отверстий фаза. Коснитесь кончиком контакта и сверху приложите палец. В одном из двух отверстий лампочка должна засветиться — это и будет фазный контакт.

Проверка нужна для того, чтобы убедится в правильности подключения фазы и нуля. Невнимательный электрик мог просто их перепутать при подключении. Возьмите самый обычный мультиметр и прикоснитесь красным щупом к фазе, а черным к нейтрали. Запомните отображенные данные. Переместите черный щуп к боковым контактам. Если на экране ничего не отобразилось или разница между данными слишком большая, значит у Вас некачественное заземление, подлежащее переделке.

Если мультиметр с замером сопротивления, то просто переведите его в соответствующий режим. На экране отобразится сопротивление, допустимый показатель должен быть в пределах 20-30 Ом.

Ток течет по пути наименьшего сопротивления. У человеческого организма 1000 Ом (1 кОм), потому сопротивление заземления должно быть меньше данного показателя.

Это достаточно дешевый способ проверить. Новый мультиметр можно приобрести от 15$, а отвертка-пробник за 1$ продается в любом переходе. Со временем они Вам не раз еще пригодятся.

Если лень покупать, можно сделать диагностику и «дедовским методом».

Проверка народным методом

Вам понадобится патрон с лампочкой и двумя проводами. Зачистите оба концы на 10-15мм. Теперь приложите один из них к фазе, а второй к боковым контактам. Лампочка должна ярко гореть.

Будьте осторожны! Когда Вы прикасаетесь одним концом к фазе, второй — тоже оказывается под напряжением. Ни в коем случае не прикасайтесь к нему голой рукой, чтобы не получить удар.

Если лампочка не горит вообще, значит «земля» — нерабочая, тусклое горение свидетельствует о слабом контакте, значит прогнил контур, или где-то отпал контакт. В этом случае найдите и устраните причину плохой пропускной способности. Проследите, куда ведет желто-зеленый провод и действительно ли он соединен с PE-шиной в щитке. Ни в коем случае не оставляйте неисправность просто так

Что будет если проигнорировать неисправность

После проверки выяснилось, что заземление настоящее, но не достаточно хорошее, чтобы пропускать ток. Что произойдет, если оставить как есть?

Представьте, что случилась утечка на корпус электроприбора.

Электричество начинает медленно перетекать в землю, но металлическая поверхность и дальше под напряжение. После касания рукой для тока возникает путь с меньшим сопротивлением — человеческое тело. Он поменяет направление и потечет в организм, из-за чего Вы получите удар. Таким образом, плохое заземление еще хуже, чем его отсутствие.

Чтобы таких проблем не возникало в будущем, сделайте проводку «на совесть» еще на этапе строительства или капремонта. Вероятно придется переделывать все, включая заземляющий контур.

Каким должен быть металлический контур

Это наиболее важная часть, так как именно от его размеров и зависит сопротивление шины PE. Обычно контур делают из металлического профиля сваренного треугольником или квадратом с электродами по углам. Электродом служит забитый в почву металлический стержень или кусок профиля длиной 30-50 см, соединенный с контуром. Каждая сторона контура должна быть до 1 метра. Здесь важно не переборщить, так как чем дальше электроды друг от друга, тем больше будет сопротивление, а значит снизится эффективность. Сваренный треугольник закапывается на глубине около 50-70 см. При помощи металлического профиля заземление подводится к дому и выводится на поверхность. Там к нему приваривается или прикручивается болтом PE-проводник, ведущий к соответствующей шине в щитке.

Если во дворе ограниченное место и негде закопать контур, вместо него Вы можете забить заземляющий электрод. Это медный стержень длиной от 120 до 300 см с заостренным наконечником с нижней стороны и болтовым соединением с верхней. Забивается обычным молотком, а сверху прикручивается провод PE.

Далее измерьте сопротивление. По СНиПу, в частном доме его показатель не должен превышать 30 Ом. Но, часто результат выше из-за особенностей почвы. В таком случае предусмотрены два варианта решения проблемы:
  • Приварить больше электродов к контуру;
  • Взять более длинный заземляющий электрод и забить его еще глубже.
Чем больше металлический контур, тем на дольше его хватит. Обычно коррозия «съедает» металл не менее чем за 40-50 лет. Все зависит от влажности почвы и насыщенности кислородом.

Помните, что кроме заземления, от несчастного случая Вас также защитит УЗО.

Зачем в квартире УЗО?

Даже недорогое устройство защитного отключения хорошо реагирует на утечки тока в электроприборах. Работает по принципу измерения параметров на входе в сеть (фазе) и выходе (нейтрали). Если вдруг возникает утечка на корпус, электричество начинает протекать в землю. На выходе получается меньше электричества, чем на входе, на что реагирует УЗО и расцепляет контакты.

Согласно ПУЭ и СНиП, в каждом доме и квартире обязательно наличие защиты от утечек дифференциальных токов в виде УЗО или дифавтомата.

РЭС требует наличия, как минимум, одного УЗО — на вводе. Но, для безопасности этого мало.

Сколько УЗО необходимо для полной защиты

На ввод рекомендуется поставить противопожарное на 100мА или больше. Оно не всегда защитит от удара, но зато устранит пожароопасную утечку. На розеточные группы необходима дифзащита на 30мА. 30мА — это максимальный безопасный разряд для среднестатистического взрослого человека. Но, дети более уязвимы к электричеству, потому на детские комнаты ставьте защиту на 10мА. То же самое поставьте и на ванную, так как вода усиливает действие тока.

Полноценный набор дифзащиты для квартиры выглядит именно так:

  • Ввод — 300мА;
  • Розеточные группы — 30мА;
  • Детская комната — 10мА;
  • Ванная — 10мА.

Если поставить вводное УЗО на 30мА, то совокупность утечек по дому может легко превышать этот показатель. Будут потери за счет нагревания кабеля, ослабленных контактов и прочих «слабых мест». Это нормальное явление, но суммарная «утечка» превысит 30мА. В результате возникнет ложное срабатыванием, и дифзащита будет постоянно отключать сеть.

Кроме того, всегда обращайте внимание на характеристику расцепления:

  • Тип «АС» — самый распространенный, реагирует только на синусоидальный переменный ток. Ставится на простое электрооборудование без микросхем и электроники;
  • Тип «А» — помимо синусоидального переменного, реагирует также на статический и постоянный ток. Устанавливается на сложную электронику с блоками питания, трансформаторами и микросхемами.

Правильно подобрав характеристики и установив достаточное количество УЗО, Вы будете защищены от опасных утечек, даже если в квартире старая проводка.

Зачем тогда заземление?

Стоит ли переделывать всю сеть, вскрывать и менять десятки метров кабеля, розетки, если дешевле и проще поставить дифзащиту? Да, стоит!

Вы пользуетесь бойлером, но при установке была случайно повреждена изоляция фазного провода. И вот, через несколько лет он сдвинулся и оголенной частью коснулся корпуса, который оказался под напряжением. Но, все работает, как и раньше, УЗО не реагирует, так как явной утечки пока нет — корпус не заземлен и электричеству некуда деваться. Проходит неделя, и вдруг Вы решили добавить температуру воды. Случайно качаетесь корпуса рукой, и Ваш организм принимает безопасный (еле заметный) разряд в 30мА, после чего резко выключился бойлер — случилась утечка. Представьте, что вместо Вас к поврежденному бойлеру (или другому электроприбору) случайно коснулся ребенок. Разряд в 30мА вряд ли бы нанес серьезные травмы, но обошлось бы легким испугом. УЗО среагировало и спасло жизнь, через неделю после аварии. В новой проводке утечка возникла бы сразу при поломке, на что сработала бы дифзащита. Вы бы знали о поломке сразу после того, как она возникла и быстрее бы ее устранили. Заземление — это еще один страховочный трос, на случай если не сработает дифзащита. Задумайтесь, от поражения тока Вас защищает маленькая механическая коробочка в щитке (с большой вероятностью сделанная китайцами). Слишком неразумно доверять свою жизнь и здоровье только ей.

Во вторичном жилье щиток скорее всего был собран до Вас, и неизвестно, как давно и что в нем стоит. Потому для собственной безопасности проверьте автоматику и в первую очередь дифзащиту.

Как проверить УЗО и дифавтомат?

Самый простой метод — с помощью кнопки «Тест», расположенной на корпусе. После нажатия имитируется утечка и должен сработать расцепляющий контакт. Если сеть отключилась, значит все работает исправно.

Также можно проверить «дедовским методом». Для этого нужно искусственно спровоцировать утечку. Возьмите патрон с лампочкой и двумя проводами, оголенными на концах. Вставьте один в фазный разъем розетки, а вторым прикоснитесь к боковым усикам. Должно сработать УЗО, после чего сеть обесточится.

Из предыдущего примера Вы помните, что если лампочка не загорается и дифзащита при этом тоже не срабатывает, значит току некуда течь, и заземление неисправно. Если лампочка стабильно горит, то дифзащита неисправна или присутствует зануление.

При осмотре новой квартиры внимательно изучите щиток. Автоматы и УЗО сомнительных китайских брендов лучше замените на более надежные европейские. Собрать хороший домашний щиток «с нуля» можно за каких-то 100$, но зато так Вы точно будете уверены в собственной безопасности.

Неработающее УЗО необходимо заменить, и чем быстрее, тем лучше. Единоразовая замена дифзащиты и розеток сделает сеть безопасной. Это обойдется всего в 15-20$, тем более Вы защитите себя и собственную квартиру от сетевых аварий.

В ином случае материальные убытки от пожара могут быть в сотни раз больше, не говоря уже о непоправимом вреду здоровью от удара тока. Не рискуйте, а инвестируйте в безопасность. Заземление и дифзащита — точно не лучшие источники для экономии личных средств.

⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓

⇒ВНИМАНИЕ⇐

  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.

⇓ОБСУДИТЬ СТАТЬЮ⇓

Ноль и заземление — Эксплуатация, обслуживание и ремонт оборудования

Ctamm, ещё раз, но проще: заземление не предназначено для протекания тока нагрузки.

Последствия — придумайте сами.

 

Вот даже не знаю, как ещё пояснить, что между заземлением на подстанции и вашим заземлением, даже в лучшее время, сопротивление в сотню раз превосходит сопротивление алюминиевого провода сечением пол квадрата длиной от вас до подстанции.

 

Не сложно же поставить опыт, взять таз пластиковый, взять три пачки соли, автомобильный аккумулятор и лампочку от фары, которая 12 вольт и 55 ватт, ток который нужен для свечения лампы 4.6 ампера, что соответствует примерно потребителю в 1 киловат для 220 вольт. Так вот налить в таз горячей воды, засыпать в таз все три кило соли и размешать, а потом соединить аккумулятор, лампочку и 2 провода замыкая которые лампочка будет зажигаться, вот эти 2 провода прикрутить к двум кускам оцинкованного железа или нержавейки, замыкаем листы, лампа светит, берём один, бросаем на дно таза, а второй начинаем топить приближая к тому, что на дне и смотрим когда лампочка загорится и как ярко. Не совать руки в таз!!! Даже 12 вольт в солёной воде так жахнут что мало не покажется. Лист который топим лучше прибить к палке и держаться только за палку не трогая таз. Сразу очевидно станет, что дохлый киловат, в пересчёте на 220 заработает нормально только в сантиметрах между листами, а между вами и подстанцией сотни метров и дома наверно не 1 киловат нагрузка суммарная.

 

Чем черевато — да чем угодно, от шагового напряжения в дождик, до выгорания всего в доме при ударе молнии в вкопанную где-то через дорогу в землю железку, молния не дура, пойдёт по пути наименьшего сопротивления, а путь этот, наименьшего сопротивления, не через всю землю на другой конец земли, а через землю до вашего заземления, а потом через ваше заземление и в провода до подстанции, там же тоже заземление, там много заземлений, а чем больше заземлений и чем дальше они друг от друга, тем меньше их сопротивление, когда они соединены проводом.

Изменено пользователем Tardis

Как сделать заземление компьютера | Электрик


Мало кто даже догадывается и понимает всю важность заземления своего компьютера, а в особенности системного блока и его блока питания.

Конечно компьютер будит работать и без заземления, но очень много зависти от индивидуальных особенностей сети и электронной компоновки плат его устройства.

Такой компьютер может «бить током» при касание системного блока, может шуметь звук на выходе звуковой карты, но самое главное ресурс его работы будет уменьшаться.

Причины необходимости заземления компьютера


Как и любая другая бытовая домашняя техника с металлическим корпусом, системный блок нуждается в заземление, это поможет уменьшить риск поражения как электрическим сетевым напряжением, так и статическим которое может достигнуть даже порядка несколько тысяч вольт!
Такое высокое напряжения, помимо поражения человека, опасно в первую очередь для электронных элементов и процессоров которые находятся внутри системного блока.

Вторая причина — электромагнитное излучение, воздействуя на человеческий организм, могут наблюдаться головные боли и переутомление, особенно заметно стает при постоянном продолжительном пребывании рядом с устройством.

Рекомендуется все же не оставлять системный блок с открытой боковой стенкой, как это любят делать многие люди. Корпус должен быть металлическим и заземленным, в таком виде он будит служить своеобразным экраном который будит защищать находящегося рядом человека.

Внутреннее устройство системного блока, в особенности блок питания, схематически продумано для отвода статического напряжения и импульсных сетевых скачков, в блоке питания, на сетевой карте и разъемах USB, на землю.

Для этого на платах устройства находятся специальные электронные элементы супрессоры, диоды, варисторы и конденсаторы.

Все заземляющие точки в компьютере электрически соединены в одну, так что заземлять можно или сам корпус, прикрутив заземляющий проводник к нему болтовым соединением, или если в розетке есть заземление то просто подключив блок питания с помощью шнура с заземлением.

Преимущества которые дает заземление компьютера

  • Увеличивает стабильность роботы компьютера и ресурс его элементов.

  • Устраняет помехи от работы компьютера и шумы на выходе звуковой карты и на входе микрофона. На не заземленном компьютере в акустике даже среднего класса или просто наушниках можно довольно громко слышать писк и всевозможные помехи которые особенно слышно в аудио звуках низкой громкости, например фильмах.

  • Устраняет возможность поражения электрическим напряжением и статическим электричеством. Между корпусом не заземленного компьютера и батареей отопления, например. есть порядка 110 вольт с довольно не маленьким током для человека.

  • Снижает вред от электромагнитного излучения, тем самым оберегая ваше здоровье и самочувствие

Как правильно заземлить компьютер

Некоторые владельцы компьютеров проживающие в старых многоэтажках, в квартирах которых нет заземляющего проводника в щитке выходят из положения делая техничное зануление или же просто используют в роли заземляющего проводника металлические трубы отопления — так делать категорически запрещается!

Помимо того нельзя также заземлять компьютер к проводнику молниеотвода, хоть он и выполняет роль отличного заземления но представьте какому риску вы будете подвергать свой компьютер во время грозы.

Запрещается в роли заземлителя использовать любые общественные и не общественные трубы коммуникаций, будь то водопровод, газопровод, канализация или трубы водоснабжения. Такие подсоединения могут привести к серьезным последствиям, помимо того что компьютер может выйти из строя, также велика вероятность поражения электричеством.


Народные способы «быстрого заземления» по типу закопанного ведра или металлического уголка не будут служить эффективным заземлением, а со временем и вовсе утратят контакт с землей.

Профессионально выполненное заземление, а только такое будет выполнять свою функцию, должно соблюдать некоторым требованиям, например сопротивление между «нулем земли» и вашей точкой заземления, розеткой или корпусом компьютера должно быть сопротивление не больше 4 — 10 Ом.

Для проверки смонтированного заземления используют специальные приборы, например Ф4103-М1.

Какие варианты заземления можно применить

  • Контур заземления — 3 металлические уголка забитых в землю в виде треугольника на расстояние 1-2 метра, соединенные металлической полосой при помощи сварки. И та же полоса от них заведена в сухое помещение где и при помощи болтового соединения осуществляется переход на медный провод толщиной жилы от 2.5мм и больше.
  • Четвертый провод трехфазного кабеля. Так сказать чистый ноль или по другому заземление подстанции. Такой способ в отличие от подключения к нулю (занулению) «от 220», не подвержен многим неприятностям.
  • Металлоконструкция железобетонного здания — неплохой вариант, но в том лишь случае когда металлические элементы вбиты в землю.
  • Водопровод — самый крайний и не разрешенный инструкциями вариант, но в быту широко используемый. Опасность здесь состоит в том что к нему не вы один будите подсоединены и в случае аварийной ситуации труба может на доли секунд оказаться под положительным потенциалом.

Заземления системного блока и компьютерной техники, а также источника бесперебойного питания применяется для получения так называемой электромагнитной совместимости (ЭМС) как от вырабатываемой устройством так и от внешних помех.

Но самая важная функция заземления — защита человека и оборудования от высокого напряжения.
В зависимости от поставленных целей, стандартов и возможностей применяют наиболее оптимальный вариант защиты.

Рабочее заземление

Согласно Правилам устройства электроустановок, рабочим (или функциональным/технологическим) заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки, но не в целях электробезопасности.

Подразумевается, что оборудование работает надежно, а если сопротивление функционального заземления ≤4 Ом, то проблемы электробезопасности вообще исключены.

Понятие функционального заземления (далее FE) для сетей питания информационного оборудования и систем связи описано в следующих нормативных документах:

  • ГОСТ Р 50571.22-2000, п. 3.14 (707.2): «Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)».
  • ГОСТ Р 50571.21-2000, п. 548.3.1: «Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)».

Для правильного понимания определений, данных выше, необходимо договорится о смысле некоторых слов:

  • «Как правило» подразумевает, что требование (условие, решение) является преобладающим. Его несоблюдение возможно, но требует весомых обоснований.
  • «Допускается» означает, что условие следует выполнять лишь как исключение в силу вынужденных обстоятельств.
  • «Рекомендуется» – решение является оптимальным, но его выполнение не обязательно.
  • «Может» символизирует правомерный вариант, один из нескольких.

 

Причины распространения функционального заземления

Первая причина
В 90-х гг. с увеличением распространения вычислительной техники, мощность которой постоянно увеличивалась, возникла необходимость обеспечить ее надежную работу в сетях типа ТN-C.

На рис. 1 показана схема рабочего заземления с использованием PEN-проводника (совмещенного нулевого рабочего N и нулевого защитного PE):

Информация передается по линии связи между 2-мя компьютерами. Возьмем за отправную точку корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Получается, что в линию связи вносится разница потенциалов, пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами.

Решением проблемы служило локальное применение отдельной системы рабочего заземления, которое обеспечивало устойчивую работу компьютеров. Стоит отметить, что стоимость перехода на «пятипроводную» систему типа TN-S была значительно выше.

Вторая причина
Распространению функционального заземления также способствовало плохое состояние защитного заземления в электроустановках. При поставках «чувствительной» электронной техники от заказчика требовалось создание отдельного заземления.

Третья причина
Возникновение специфических и строгих требований по защите информации, особых лабораторий и других аналогичных объектов также послужило распространению FE.

 

Основные схемы выполнения функционального заземления

Вариант «А» существует и даже исполняется, но является самым опасным из представленных с точки зрения электробезопасности и безопасности объекта в целом. Подробные объяснения приведены ниже.

Вариант «В» является формальным подходом, выполнение системы с его использованием полностью законно. Это качественное защитное заземление с радиальной схемой разводки, которое используется для вновь строящихся объектов.

Вариант «С» – удобная схема для реконструируемых объектов. С точки зрения воздействия помех на ответственное оборудование данный вариант значительно лучше, чем «В».

Недостатки варианта «А»:

1. Разрушается целостность основной системы уравнивания потенциалов, что приводит к появлению разности потенциалов на независимых системах заземления в процессе эксплуатации.

Причины появления разности потенциалов могут быть такими:

2. Крайне низкие токи короткого замыкания фаза-корпус относительно сетей типа TN-S со всеми вытекающими последствиями (см. рис. 3).

Рис. 3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN

FE не имеет точки соединения с ГЗШ и с нейтралью, и токи короткого замыкания составят только десятки ампер. Ситуация ухудшается отсутствие в цепи устройства защитного отключения. Максимальный ток короткого замыкания составит 36,6 А:

Время отключения составит 30-120 сек, и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам, и протекать ток большой величины, что может привести к возгоранию. При наличии автоматов с номинальным рабочим током более 32 А цепь вообще не отключится.

Повторим: вариант «А» использовать для сетей типа TN-S крайне опасно.

  

  

Ф – сетевой фильтр, ФЗ – фильтр заземления.

Вариант «D» демонстрирует соединение FE и ГЗШ с использованием разрядника уравнивания потенциалов. Вариант имеет проблему: он сработает только в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника (600-900В). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и электробезопасности при первичном пробое не обеспечивается.

Вариант «Е» разработан с учетом установки в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления (например, «Квазар Ф-ХХХРЕ», изготовитель ГК «Полигон»).

Варианты «F», «G», «H» показывают построение FE с постепенным улучшением уровня защиты ответственного электрооборудования от помех без проблем с электробезопасностью.

 

Функциональное заземление в лечебно-профилактических учреждениях

Функциональное заземление относительно ЛПУ осуществляется для обеспечения нормальной стабильной работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.

В циркуляре №24/2009 написано, что при отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

Требование подключения к главной заземляющей шине: «…Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…».

 

Взаимное влияние разных систем заземления отдельных помещений при наличии связи через сторонние проводящие части

В качестве примера рассмотрим следующую ситуацию:

Есть 2 помещения с электрооборудованием, в каждом установлена дополнительная система уравнивания потенциалов. Помещение номер №1 подключено к системе защитного заземления (РЕ) и имеет помехообразующую нагрузку. В помещении №2 есть ответственное электрооборудование и организовано подключение к системе FE.

На рисунке видно, что между двумя системами заземления за счет сторонних проводящих частей (в данном случае система отопления) образуется «паразитная» связь с сопротивлением RСП.

В итоге по FE-проводникам протекает часть тока утечки IУ2. Вычислить величину этого тока достаточно сложно. С одной стороны, FE-проводники из медного провода с хорошей проводимостью и небольшим сопротивлением. С другой стороны, водопроводные трубы и прочие сторонние проводящие части в сумме могут обладать значительным сечением, что компенсирует плохую проводимость железа. Поэтому IУ2 = 0,5*IУ допустимое реальное соотношение.
Избавиться хотя бы от одного проводника «А», «В» или «С» невозможно по причине безопасности объекта и электробезопасности персонала.
Как вариант, можно сильно увеличить сечение проводника «D», что пропорционально уменьшит ток утечки IУ2. Но, как вы понимаете, это повлечет значительные затраты.

Правильное заземление для порошкового окрашивания – aluminium-guide.com

Электростатика порошкового окрашивания

Порошковое покрытие

Порошковое окрашивание – это метод нанесения электрически заряженной порошковой краски на заземленное металлическое изделие, например, алюминиевый профиль. Порошок электростатически притягивается к изделию и оседает тонким слоем на его поверхности. Затем изделие вместе с нанесенным слоем порошка помещают в печь, где этот порошок «запекается» в прочное и долговечное покрытие.

Зарядка порошка

В большинстве систем электростатического окрашивания зарядка частиц порошка производится с помощью коронного разряда (рисунок 1). Взвешенный порошок подается сжатым воздухом на выход из напылительного пистолета. Здесь находится так называемый зарядный электрод, который находится под высоким (до 100 киловольт) электрическим напряжением, обычно отрицательным. На острие этого электрода создается область с большим количеством отрицательных свободных ионов – коронный разряд или «корона». Частицы порошка проходят через эту область, захватывают эти свободные отрицательные ионы и получают за счет этого отрицательный заряд. Силы электрического поля и поток сжатого воздуха толкают эти заряженные частицы порошка в направлении заземленного изделия.


Рисунок 1 – Принцип электростатического напыления порошка методом “корона” [1]

Осаждение порошка на изделие

Большинство материалов, применяемых для порошковых покрытий, являются сильными диэлектриками. Когда такая заряженная частица порошка подходит к металлической поверхности, например, алюминиевого профиля, она индуцирует в металле заряд такой же величины, но противоположной полярности (рисунок 2) [2].


Рисунок 2 – Зеркальный заряд [2]

Это происходит потому, что под действием отрицательного заряда частиц порошка электроны проводимости внутри металлического изделия отталкиваются от его поверхности и уходят по электрической цепи заземления в землю. Вблизи поверхности изделия образуется область с избыточным положительным зарядом, равным по величине отрицательному заряду частиц порошка.

Зеркальный заряд и заземление

Этот положительный заряд называют «зеркальным зарядом». Эти два заряда равной величины и противоположной полярности располагаются один напротив другого по обе стороны металлической, например, алюминиевой, поверхности. Они притягивают друг друга и удерживают частицу порошка на металлической поверхности [2].

Для быстрого образования зеркального заряда свободные электроны должны быстро и свободно “выталкиваться” из изделия в землю. Именно поэтому хорошее заземление так важно для электростатического порошкового окрашивания.

Что такое хорошее заземление?

Проблемы плохого заземления

Немалая доля проблем, которые возникают на линии порошкового окрашивания, происходят из-за недостаточного заземления окрашиваемого изделия или полного его отсутствия. К таким проблемам относятся, в том числе, следующие [3]:

  • Неоднородность покрытия от изделия к изделию, от подвески к подвеске, от смены к смене
  • Чрезмерный расход краски или колебание ее расхода
  • Чрезмерное налипание краски на оборудование
  • Необходимость постоянной корректировки технологических параметров линии окрашивания.

Как заземление влияет на качество

Когда окрашиваемое изделие, которое входит в камеру электростатического напыления порошка, имеет недостаточное заземление, то возникают следующие характерные явления [3]:

  • Изделие не способно эффективно притягивать заряженные частицы порошка, в результате чего слой краски получается слишком тонким.
  • Изделие становится своего рода конденсатором, который накапливает отрицательный заряд. Поэтому изделие начинает отталкивать заряженные частицы порошка. Заряд, который содержится в изделии, может вызвать электрический разряд, что при некоторых условиях может привести к возгоранию.
  • Заряженный порошок будет искать ближайшие заземленные объекты и притягиваться к ним (стенки камеры напыления, оборудование и пол).

Причины недостаточного заземления

Поиск возможных причин плохого заземления окрашиваемых изделий заключается в ответах на следующие вопросы [3]:

  • Имеет ли конвейерная система надежное заземлением при прохождении через камеру электростатического напыления?
  • Применяется ли периодический контроль заземления изделий перед их входом в камеру электростатического напыления?
  • Применяется ли токопроводящая смазка для смазывания роликов конвейера? Находятся ли ролики конвейера в контакте с направляющим рельсом при прохождении через камеру электростатического напыления?
  • Как часто чистят элементы цепи конвейера (встроенные чистящие щетки, периодическая чистка, замена)?
  • Защищены ли точки контакта подвесок и крюков от налипания краски? Какой метод применяется для чистки контактов подвесок и крюков, а также подвесок в целом?

Безопасное заземление

Одной из важных функций заземления является обеспечение безопасности, в том числе, пожарной. Так, например, инструкция Американской Национальной противопожарной ассоциации (NFPA) устанавливает, что окрашиваемое изделие при подключении на землю должно иметь электрическое сопротивление не более 1 МОм. Один «мегаом» равняется миллиону «омов», что является немалым количеством электрического сопротивления. Это требование исходит из условий безопасности, чтобы надежно обеспечивать отсутствие источников воспламенения для распыленного (атомизированного) порошка [4].

Неокрашенные металлические изделия, в том числе, алюминиевые профили, чистые крюки и подвески, чистый конвейер имеют малое электрическое сопротивление, так все они являются хорошими проводниками. То, что портит этот идеальный путь электрического заряда от детали к заземлению – это:

  • налипание краски на точки контакта изделия, подвески и конвейера;
  • загрязнение роликов, цепей, шарниров и соединений конвейера.

Все эти точки контакта вместе и должны быть способны обеспечивать электрическое соединение изделия с землей при сопротивлении не более 1 МОм.

Проверка заземления

Мегаомметр для измерения заземления

Прибором, который применяют для измерения непрерывности электрической цепи до изделия до заземления, является омметр, который имеет мегаомную шкалу. Этот прибор может быть обычным вольт-омметром или мегаомметром (мегометром). Для измерения электрического сопротивления электрических цепей обычный вольт-омметр применяет источник питания низкого напряжения (около 9 вольт). Этого прибора вполне достаточно для проверки обычной электрической цепи, однако он не годится для проверки заземления системы порошкового окрашивания [4].

Мегаомметр первоначально был разработан для проверки обмотки электродвигателй и изоляции проводов. Этот прибор лучше подходит для контроля заземления системы порошкового окрашивания, так как его источник питания обычно дает напряжение 250, 500 или 1000 вольт. Это более высокое напряжение обеспечивает необходимую силу тока, которая требуется для измерения сопротивления цепи до заземления в системах порошкового окрашивании [4].

Перед тем, как применять этот мегаомметр, необходимо внимательно прочитать инструкцию по его эксплуатации и строго ей следовать, что бы избежать удара электрическим током, а также обеспечить получение правильных результатов измерения электрического сопротивления. Для проверки заземление во всей системе порошкового окрашивания обычно применяют два достаточно длинных медных провода и два зажима типа «крокодил».

Как проверяют заземление

В первую очередь, важно проверить заземление здания, чтобы убедиться, что вы имеете нормальную цепь заземления. Чтобы проверить точку подсоединения к заземлению, нужно соединить один провод со стержнем заземления, а другой провод к вашей точке подсоединения к заземлению. Этой точкой подсоединения к заземлению может быть, например, опорная стальная конструкция конвейера или любое металлическое устройство, которое соединено с землей.

Чтобы проверить сопротивление заземления подсоединяют один тестовый провод к проверенному заземлению здания, а другой – к изделию, установленному на подвеске системы порошкового окрашивания (рисунок 3а). С точки зрения безопасности это показание сопротивления заземления должно быть не более 1,0 МОм. Это сопротивление заземления, которое включает всю цепь: изделие, подвески, шарниры и все компоненты конвейера.

Если сопротивление заземления превышает 1,0 МОм, то нужно перенести тестовый провод от изделия и подсоединить его к следующему элементу этой «электрической цепи» – контакт подвески (рисунок 3б).

Если показание прибора будет все еще выше 1,0 МОм, то нужно продолжать тестировать каждую следующую точку контакта этой цепи – кронштейны, ролики, цепи, направляющие и т. п., пока не будет получен положительный результат измерения сопротивления заземления (рисунок 3в).

а

б

в
Рисунок 3 – Замеры электрического сопротивления заземления:
а – на изделии, б – на подвеске, в – на конвейере

Выполняя последовательно эти действия, можно точно определить, где пропадает заземление, и какая часть системы порошкового окрашивания требует чистки и технического обслуживания.

Технологическое заземление

Наиболее важная технологическая проблема, которая возникает при плохом заземлении – это неравномерная или недостаточная толщина порошкового покрытия. Кроме того, при плохом заземлении слой краски на различных изделиях подвески будет различаться, а участки поверхности с клетками Фарадея становится еще труднее покрыть краской. Кроме того, кромки профилей также могут иметь проблемы с покрытием.

Другой проблемой плохого заземления является низкая эффективность первичного осаждения порошка на изделие. Поскольку порошок «не хочет» притягиваться к изделию с достаточно высокой скоростью, то количество порошка, который не смог осесть на изделие и вернулся на рекуперацию, будет значительно выше, чем в случае, когда обеспечивается хорошее заземление.

Какое же сопротивление заземления является оптимальным с точки зрения технологии? Инструкция компании Nordson [5] устанавливает требования для сопротивления заземления для систем порошкового окрашивания с учетом условий не только безопасности, но и технологичности (рисунок 4) [5]:

  • Применяемый прибор: мегаомметр (мегометр) на 500 В или 1000 В.
  • Периодичность контроля: ежедневно.
  • Требуемые показания:
    – Идеально: 0 Ом
    – Приемлемо: от 200 до 300 Ом
    – Необходимы корректирующие действия: ≥ 1,0 МОм.

Рисунок 4 – Контрольное измерение сопротивления заземления
системы порошкового окрашивания [5]

Таким образом:

  • оптимальными показаниями сопротивления заземления с точки зрения эффективности технологии является интервал от 0 до 300 Ом;
  • предельно допустимым с точки зрения безопасности является показание сопротивления заземления 1,0 МОм.

Как поддерживать надежное заземление?

  • Неокрашенные металлические изделия, например, алюминиевые профили, являются естественным образом токопроводящими.
  • Наиболее частой причиной плохого заземления являются загрязненные контакты подвесок. Вся подвеска в целом может быть окрашена, но точки контакта (с обоих концов профиля) должны быть достаточно чистыми, чтобы проводить электричество для обеспечения заземления.
  • Компоненты конвейера, через которые проходит цепь заземления, также требует регулярной чистки. Загрязненные рычаги, ролики, цепи, направляющие и т. п. могут быть причиной недостаточного заземления окрашиваемого изделия.

Источники:

  1. Application Variables for Powder Coating Systems / Ken Kreeger – Nordson Corporation – 1994
  2. Electrostatic Phenomena in Powder Coating / S. Guskov – Nordson Corporation – 2017
  3. Electrostatics: Better Understanding for Better Results /John Tomaro -Nordson Corporation – 2004
  4. Finding Solid Ground / N. Liberto – Powder Coating, September 2011
  5. Electrostatic System Installation, Checks, and Troubleshooting. Customer Product Manual – Nordson Corporation – 2003

См. также Контроль качества порошковых красок: показатели, методы, стандарты – Руководство

Ответы на часто задаваемые вопросы по электропастуху

Часто задаваемые вопросы

Если в конструкции электроизгороди имеются недостатки, влияющие на работу изгороди, животное не научатся остерегаться соприкосновения с ней. Недостаточное заземление, неправильные соединения и утечка электричества в землю из-за плохой изоляции или обильного растительного покрова являются типичным примером таких недостатков.

Работа электроизгороди настолько эффективна по всему её периметру, насколько эффективна её работа в самом слабом звене её конструкции. Электричество должно входить беспрепятственно из генератора в изгородь и возвращаться из земли по шестам заземления, а через них в генератор. Короткого замыкания не должно быть ни в одном звене конструкции, так как оно является показателем неправильных соединений или утечки электричества в землю.
Зимой, а также в летнее время года на песчаной или скалистой местности в очень сухих климатических условиях, электроизгородь не работает должным образом, так как снег, замёрзший грунт и сухая почва плохо проводят электричество. Эту проблему можно решить с помощью Olli зимней ленты, или ограждением из двух лент (см. отдельную инструкцию для зимнего ограждения Olli!).

Для ограждения животных густошёрстных пород следует использовать более мощные генераторы, так как густой шерстяной покров хорошо изолирует электричество.
Используйте Olli супер тестер для проверки рабочего состояния изгороди. С помощью супер тестера Вы легко сможете выяснить напряжение электроизгороди.

Типичные проблемы и способы их устранения

Подсоединение проводов изгороди и шестов заземления к генератору.
Иногда провода изгороди провисают из-за колебаний электроизгороди ветром или провод заземления может случайно отсоединиться от шеста заземления. Проверьте подсоединения и устраните неполадку при необходимости.

Соединения ленты ограждения
Используйте всегда соединения с винтовым креплением, когда подсоединяете генератор к изгороди. Вы сможете легко это сделать с помощью соединительного кабеля изгороди. Используйте перекидной кабель Olli для того, чтобы закрепить кабели соединения изгороди друг к другу. Для удлинения соединительного кабеля используйте металлические соединительные детали Olli. Если Вы всё-таки связываете ленту или провод, отделите металлические проводники от ленты/провода и прочно скрепите их. Каждое неправильно сделанное соединение значительно снижает проводимость электричества по электроизгороди. В соединениях не должно возникать короткого замыкания! Проверьте правильность установки соединений и исправьте при необходимости.

Изоляция кабеля электроизгороди от земли
Электроизгородь — это высоковольтная линия, поэтому изоляторы должны быть выбраны именно с этой целью , т.е изоляторы должны быть прочными и хорошо выдерживать напряжение! Так, например, сделанный из пластмассы шланг не является достаточно хорошим изолятором. Изоляторы должны быть целыми и провод изгороди не должен касаться земли, деревянного или металлического шеста изгороди, или растительности ни в одном звене выстроенного ограждения. Генератор способен высушить стебли растительного покрова, которые , в свою очередь, негативно влияют на проведение электричества по изгороди. В этом случае, также действует старое доброе правило «мера во всём»: находящийся в гуще влажной травы или касающийся дерева провод электроизгороди, наверняка, будет причиной утечнки электричества. Устраните растительный покров от изгороди полностью, если это возможно. Также находящийся у ворот провод может быть причиной утечки электричества в землю.

Соединительные провода и подземные кабели
Для проведения электричества под землёй или на её поверхности нельзя использовать обычный 230-вольтовый силовой кабель, а также, ни в коем случае нельзя использовать кабели с пластмассовым или резиновым покрытием. Такие кабели, даже прочные на вид, предназначены для изоляции напряжения максимум в 700 вольт. Генератор вырабатывает импульс напряжением в 5000-10000 вольт. При таком напряжении обычный силовой кабель будет давать утечку как решето, только лишь малая доля электричества будет проведена к изгороди. Используйте только предназначенные для электроизгородей, изолирующие высокое напряжение подземные кабели Olli.

Заземление
Используйте как минимум два, сделанных из стали горячей оцинковки, шеста заземления Olli, длиной в один метр. Шест заземления должен быть вставлен там, где уровень влажности доостаточный для хорошего заземления, например в ров. Согласно административным нормам и правилам, во избежании помех, шесты заземления нельзя подсоединять к шестам заземления зданий, и безопасное расстояние между шестами заземления электроизгороди и заземлением здания должно быть не менее 10 метров. Под карнизами домов и внутри помещений, таких, например, как манеж, условия тоже являются слишком сухими для обеспечения достаточного электрического контакта шеста заземления с почвой.
Маленькие шесты заземления или шесты со ржавчиной дают плохое заземление. Оцинкованный шест заземления тоже не вечен, хотя и служит значительно дольше, чем неоцинкованный. Используемый при заземлении зданий медный кабель можно использовать также в заземлении электроизгороди, но между заземлением здания и электроизгороди необходимо учесть упомянутое выше безопасное расстояние в 10 метров.

Работа электроизгороди
Если лампочка генератора не мигает, генератор не получает электричества или в электроизгороди имеются неполадки.
Генератор от сети: сначала проверьте вставлен ли штепсель в розетку. Генератор, работающий от аккумулятора или батареи: аккумулятро или батарея могут быть разряжены.
Если Вы сомневаетесь в удовлетворительном рабочем состоянии электроизгороди, отсоедините генератор от электроизгороди и померяйте напряжение с помощью тестера Olli прямо между полюсами прибора. Подключите питание генератора и коснитесь наконечником тестера отмеченного плюсового полюса и наконечником стержня тестера отмеченного полюса заземления. (Если Вы используете новый , оснащённый кнопками, электропастух Olli, то полюс дигитестера не поместится в отверстие находящегося под кнопкой разъёма. Подсоедините коротенький провод к генератору и померяйте от него напряжение. В этом случае тестер должен показать в зависимости от модели электропастуха, напряжение в 4000-10 000 вольт (на дисплее дигитестера 1 кВ = 1000 Вольт).
Если в генераторе есть неполадка, её, как правило, возможно устранить. По вопросам ремонта генераторов просим обращаться напрямую к официальному диллеру Olli или напрямую на завод изготовитель Farmcomp Oy.

Состояние проволоки электроизгороди
Убедитесь в том, что по всей длине проволоки нет короткого замыкания (искр), так как явление искрения в электроизгороди всегда свидетельствует о повреждении проводников.
Более тонкие провода в комплекте с более лёгкими столбиками электроизгороди предназначены в первую очередь для ограждения пастбищ. Если Вы используете более устойчивые деревянные столбы, будьте особенно внимательны с натяжением: тонкие провода и ленты не выдерживают очень сильного натяжения. Их можно повредить излишним натяжением, в этом случае проводники могут разорваться. Возникающее в этом случае короткое замыкание может даже разорвать ленту. Проверьте, чтобы провода электроизгороди не искрились и замените их при необходимости.
Электропастух даже в теории не может сжечь проводники электроизгороди так, чтобы они разъединились. Если электроизгородь искрится, то проводники разъединились по какой-либо другой причине, например, из-за излишнего натяжения, коррозии или в результате износа.
Для постоянных установок используйте предназначенные в этих целях крепкие Olli Shockteq-ленты и провода. Не забывайте о том, что электроизгородь необходимо чистить от снега зимой, так как снег вызывает утечку электричества и короткие замыкания даже в самой лучшей электроизгороди.

6 Проблемы с проводкой и заземлением, которые приводят к низкому качеству электроэнергии

Проблемы с проводкой и заземлением

В этой технической статье представлены типичные проблемы с проводкой и заземлением, связанные с качеством электроэнергии. Приведены возможные решения этих проблем, а также возможные причины проблем, наблюдаемых в системе заземления. (См. Таблицу 2 внизу статьи)

6 Проблемы с проводкой и заземлением, которые приводят к низкому качеству электроэнергии

Следующий список представляет собой лишь образец проблем, которые могут возникнуть в системе заземления.

  1. Изолированное заземление
  2. Контуры заземления
  3. Отсутствие защитного заземления
  4. Множественные заземляющие заземления
  5. Дополнительные заземляющие стержни
  6. Недостаточно нейтральных проводников

1. Изолированное заземление

Изолированные заземления сами по себе не являются проблема с заземлением. Однако неправильно использованное изолированное заземление может быть проблемой. Изолированные заземления используются для снижения шума в системе заземления. Это достигается за счет использования изолированных розеток заземления, которые обозначены знаком «∆» на лицевой стороне розетки .

Изолированные розетки заземления часто имеют оранжевый цвет. На рисунке 1 показана правильно подключенная изолированная цепь заземления.

Рисунок 1 — Правильно подключенная изолированная цепь заземления

Вот что говорит NEC об изолированном заземлении.

NEC 250-74 Подключение клеммы заземления розетки к коробке

Перемычка заземления оборудования должна использоваться для подключения клеммы заземления розетки заземляющего типа к заземленной коробке.

Исключение №4. Там, где это требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, разрешается использовать розетку, в которой вывод заземления специально изолирован от средств крепления розетки. Клемма заземления розетки должна быть заземлена изолированным заземляющим проводом оборудования, проложенным с проводниками цепи. Этому заземляющему проводнику должно быть разрешено проходить через один или несколько щитовых щитов без подключения к зажиму заземления щитового щита , как это разрешено в Разделе 384-20, Исключение, так, чтобы он заканчивался в том же здании или строении непосредственно на зажиме заземляющего провода оборудования. применимая производная система или источник.

(FPN): Использование изолированного заземляющего провода оборудования не отменяет требования по заземлению системы кабельных каналов и розеточной коробки.

NEC 517-16 Розетки с изолированными клеммами заземления

Розетки с изолированными клеммами заземления, как разрешено в Разделе 250-74, Исключение № 4, должны быть идентифицированы. Такая идентификация должна быть видна после установки.

(FPN): При выборе такой системы с розетками с изолированными заземляющими выводами важно соблюдать осторожность, поскольку полное сопротивление заземления контролируется только заземляющими проводниками и не имеет функциональной выгоды от каких-либо параллельных путей заземления.

Ниже приводится список подводных камней, которых следует избегать при установке изолированных цепей заземления:

  • Подключение изолированной цепи заземления к обычной розетке.
  • Совместное использование кабелепровода изолированной цепи заземления с другой цепью.
  • Установка изолированной розетки заземления в двухконтактной коробке с другой цепью.
  • Отсутствие изолированной цепи заземления в металлической кабельной броне или кабелепроводе.
  • Не предполагайте, что изолированная розетка заземления имеет действительно изолированное заземление.

Вернуться к «Проблемы с проводкой и заземлением» ↑


2. Контуры заземления

Контуры заземления могут возникать по нескольким причинам. Один из них — это когда два или более единицы оборудования используют общую цепь, такую ​​как цепь связи, , но имеют отдельные системы заземления (рисунок 2).

Рисунок 2 — Цепь с контуром заземления

Чтобы избежать этой проблемы, следует использовать только одно заземление для систем заземления в здании. Можно использовать более одного заземляющего электрода, но они должны быть связаны вместе (NEC 250-81, 250-83 и 250-84), как показано на Рисунке 3 ниже.

Рисунок 3 — Заземляющие электроды должны быть соединены вместе

Вернуться к Проблемы с проводкой и заземлением ↑


3. Отсутствует защитное заземление

Отсутствие защитного заземления представляет собой серьезную проблему . Отсутствие защитного заземления обычно происходит из-за обхода защитного заземления. Это типично для зданий, в которых розетки на 120 В имеют только два провода.

Современное оборудование обычно оснащается вилкой с тремя контактами, один из которых является заземляющим.При использовании этого оборудования в двухконтактной розетке можно использовать адаптер заземляющей вилки или «читерскую вилку» при условии, что в розетке имеется заземление оборудования.

Это устройство позволяет использовать устройство с тремя контактами в розетке с двумя контактами. При правильном подключении защитное заземление остается нетронутым. На рисунке 4 показано правильное использование вилки читера.

Рисунок 4 — Правильное использование адаптера заземляющей вилки или «штепсельной вилки»

Если в розетке нет заземления оборудования, то адаптер заземляющей вилки использовать нельзя.При наличии заземляющего провода оборудования предпочтительным методом решения проблемы отсутствия защитного заземления является установка новой трехконтактной розетки в розетке .

Этот метод гарантирует, что заземляющий провод не будет шунтирован. NEC подробно обсуждает заземляющие провода оборудования в , Раздел 250 — Заземление .

Вернуться к проблемам с проводкой и заземлением ↑


4. Множественные соединения нейтрали с землей

Еще одно заблуждение при заземлении оборудования состоит в том, что нейтраль должна быть связана с заземляющим проводом .В системе или подсистеме допускается только одно соединение нейтрали с землей. Обычно это происходит на служебном входе в объект, если нет отдельно производной системы.

Отдельно производная система определяется как система , которая получает питание от обмоток трансформатора, генератора или преобразователя какого-либо типа. Отдельно производные системы должны быть заземлены в соответствии с NEC 250-26.

Нейтраль должна находиться отдельно от заземляющего провода во всех панелях и распределительных коробках, которые расположены ниже служебного входа.Дополнительное соединение нейтрали с землей в энергосистеме приведет к протеканию нейтральных токов в системе заземления.

Этот ток в системе заземления возникает из-за параллельных путей. Рисунки 5 и 6 иллюстрируют этот эффект.

Рисунок 5 — Поток нейтрального тока с одним соединением нейтраль-земля
Рисунок 6 — Нейтральный ток с дополнительным соединением нейтраль-земля

Как видно на Рисунке 6, нейтральный ток может попасть в систему заземления из-за к дополнительному заземлению нейтрали на вторичной панели управления.Обратите внимание, что не только ток будет течь в заземляющем проводе для системы питания, но токи могут течь в экранированном проводе для коммуникационного кабеля между двумя компьютерами.

Если необходимо восстановить соединение нейтрали с землей (высокое напряжение нейтраль-земля), это может быть выполнено путем создания отдельно производной системы , как определено выше. На рисунке 7 показана отдельно производная система.

Рисунок 7 — Пример использования отдельно производной системы

Вернитесь к Проблемы с проводкой и заземлением ↑


5.Дополнительные стержни заземления

Дополнительные стержни заземления — еще одна распространенная проблема в системах заземления . Стержни заземления для объекта или здания должны быть частью системы заземления. Заземляющие стержни должны быть подключены там, где все заземляющие электроды здания соединены вместе.

Изолированное заземление можно использовать, как описано в разделе «Изолированное заземление NEC», но не следует путать его с изолированными заземляющими стержнями, что недопустимо.

Основная проблема с дополнительными заземляющими стержнями заключается в том, что они создают вторичные пути для протекания переходных токов, таких как удары молнии, для протекания .Когда на объекте используется один заземляющий стержень, любые токи, вызванные молнией, попадут в систему заземления здания в одной точке. Потенциал заземления всего объекта будет расти и падать вместе.

Однако, если для объекта используется более одного заземляющего стержня, переходный ток входит в систему заземления объекта более чем в одном месте, и часть переходного тока протекает по системе заземления, вызывая повышение потенциала заземления оборудования. на разных уровнях.

Это, в свою очередь, может вызвать серьезные проблемы с переходным напряжением и возможные условия перегрузки проводника !

Вернуться к «Проблемы с проводкой и заземлением» ↑


6. Недостаточный нейтральный проводник

С увеличением использования электронного оборудования в коммерческих зданиях растет озабоченность по поводу повышенного тока на заземленный провод ) . При типичной трехфазной нагрузке, которая уравновешена, теоретически в нейтральном проводе не течет ток, как показано на рисунке 8.

Рисунок 8 — Сбалансированная трехфазная система

Однако ПК, лазерные принтеры и другое электронное офисное оборудование используют одну и ту же базовую технологию для получения энергии, необходимой для работы. На рисунке 9 показан типичный блок питания для ПК . Входная мощность обычно составляет 120 вольт переменного тока, однофазный.

Для работы внутренних электронных компонентов требуется различных уровней постоянного напряжения (например, ± 5, 12 вольт постоянного тока) .

Рисунок 9 — Базовая однолинейная схема для SMPS

Это постоянное напряжение получается путем преобразования переменного напряжения через какой-либо тип выпрямительной схемы, как показано.Конденсатор используется для фильтрации и сглаживания выпрямленного сигнала переменного тока. Эти типы источников питания называются импульсными источниками питания (SMPS).

Проблема с устройствами, которые включают использование SMPS, , что они вносят тройные гармоники в систему питания .

Тройные гармоники — это гармоники, которые являются нечетными кратными компоненту основной частоты (h = 3, 9, 15, 21,…) . В системе со сбалансированной однофазной нагрузкой, как показано на рисунке 10, присутствуют составляющие основной гармоники и третьей гармоники.

Применение закона Кирхгофа в узле , узел N показывает, что основная составляющая тока в нейтрали должна быть равна нулю. Но когда нагрузки сбалансированы, составляющие третьей гармоники в каждой фазе совпадают. Следовательно, величина тока третьей гармоники в нейтрали должна быть в три раза больше тока фазы третьей гармоники.

Рисунок 10 — Сбалансированные однофазные нагрузки

Это становится проблемой в офисных зданиях, когда несколько однофазных нагрузок питаются от трехфазной системы.С каждой цепью прокладываются отдельные нейтральные провода, поэтому ток нейтрали будет эквивалентен току в линии.

Однако, когда несколько нейтральных токов возвращаются в панель или трансформатор, обслуживающий нагрузку, тройные токи добавляются к общей нейтрали для панели , и это может вызвать перегрев и, в конечном итоге, даже привести к выходу из строя нейтрального проводника !

Если используются офисные перегородки, то в перегородке с трехфазными проводниками прокладывается такой же нейтральный провод, зачастую меньшего размера.Каждая розетка питается от отдельной фазы, чтобы сбалансировать ток нагрузки.

ВНИМАНИЕ! Однако одна нейтраль обычно используется всеми тремя фазами. Это может привести к катастрофическим результатам , если электрические розетки перегородки используются для питания нелинейных нагрузок, богатых тройными гармониками . В наихудших условиях ток нейтрали никогда не превысит 173% фазного тока.

На рисунке 10 показан случай, когда трехфазная панель используется для обслуживания нескольких однофазных ПК с ИИП.

Вернуться к проблемам с электропроводкой и заземлением ↑


Сводка

Как обсуждалось выше, тремя основными причинами заземления в электрических системах являются:

  1. Личная безопасность
  2. Правильная работа защитного устройства
  3. Контроль шума

Следуя приведенным ниже инструкциям, можно достичь целей по заземлению:

  • Все оборудование должно иметь защитное заземление. Провод защитного заземления
  • Избегайте токов нагрузки в системе заземления.
  • Поместите все оборудование в системе на одной и той же эквипотенциальной ссылки.

В таблице 1 приведены типичные проблемы с проводкой и заземлением.


Таблица 1 — Сводка проблем с проводкой и заземлением

Сводные вопросы
Хорошее качество электроэнергии и методы контроля шума не противоречат требованиям безопасности.
Проблемы с проводкой и заземлением вызывают большинство проблем, связанных с помехами оборудования.
Постарайтесь подключить чувствительное оборудование к выделенным цепям.
Заземленный проводник, нейтральный проводник, должен быть соединен с землей на трансформаторе или главной панели, но не на другой линии ниже панели, за исключением случаев, когда это разрешено отдельно производными системами.

Таблица 2 — Типичные проблемы с проводкой и заземлением и причины

Обгоревшая панель или распределительная коробка
Наблюдаемое состояние или проблема проводки Возможная причина
Импульс, падение напряжения Ослабленные соединения выпадение Неисправный выключатель
Токи заземления Дополнительное соединение нейтрали с землей
Токи заземления Переключение нейтрали на землю
Экстремальные колебания напряжения в нейтрали Высокое
Колебания напряжения Высокоомное соединение нейтрали с землей
Высокое напряжение нейтрали относительно земли Высокоомное заземление
Запах гари на панели, распределительной коробке или нагрузке Неисправный проводник, неисправен соединение, искрение или перегрузка проводки
Панель или распределительная коробка теплые на ощупь Неисправный выключатель или плохое соединение
Жужжащий звук Дуга
Обгоревшая изоляция Перегрузка проводки, неисправный проводник или плохое соединение
Плохое соединение, неисправный провод
Нет напряжения на нагрузочном оборудовании Сработал выключатель, плохое соединение или неисправный проводник
Неустойчивое напряжение на нагрузочном оборудовании Плохое соединение или дуга

Вернуться к проблемам с проводкой и заземлением ↑

Ссылка // Halpin, S.М. «Качество электроэнергии»; Справочник по электроэнергетике под ред. Л.Л. Григсби (приобретение в твердом переплете у Amazon)

Достижение приемлемого уровня в бедных почвах

Чтобы ваша электрическая система функционировала должным образом, важно, чтобы ваша подземная система заземления имела низкое сопротивление. Так как же достичь этой цели, помня о безопасности?

При проектировании и установке систем электроснабжения правильное заземление — это не просто роскошь, а необходимость.Все хорошие системы заземления должны обеспечивать путь с низким сопротивлением для проникновения в землю токов короткого замыкания и молнии, обеспечивая максимальную безопасность от сбоев в электрической системе и молнии. В частности, правильно установленная система заземления не только помогает защитить здания и оборудование от повреждений, вызванных непреднамеренными токами короткого замыкания или разрядами молнии, но также защищает гораздо более важные инвестиции: людей.

Достичь приемлемой позиции — непростая задача. Правильная установка систем заземления требует знания национальных стандартов, материалов проводов, соединений и концевых заделок (рис.1, в оригинальной статье). Но это не все. Не забывайте учитывать почвенные условия, в которых вы устанавливаете заземляющие стержни (или заземляющую сетку).

Влияние почвенных условий на заземление. Хотя общая эффективность подземной системы заземления зависит от многих факторов, сопротивление земли (или удельное сопротивление земли) значительно влияет на полное сопротивление подземного проводника. Характеристики почвы, такие как влажность, температура и тип почвы, определяют общее удельное сопротивление земли.При заземлении вашей системы всегда помните следующее:

  • Содержание влаги.

    Содержание влаги в почве важно, потому что она помогает химическим веществам в почве, окружающим заземляющие проводники, проводить электрический ток. Как правило, чем выше содержание влаги, тем ниже удельное сопротивление почвы. Когда влажность падает ниже 10%, удельное сопротивление значительно увеличивается.

  • Температура почвы.

    Температура ниже нуля также увеличивает удельное сопротивление почвы.Как только влага превращается в лед, сопротивление резко возрастает. В зонах, подверженных замерзанию, необходимо установить заземляющий стержень ниже линии замерзания для поддержания заземления с низким сопротивлением.

  • Тип почвы.

    Черная грязь или почвы с высоким содержанием органических веществ обычно являются хорошими проводниками, поскольку они сохраняют более высокий уровень влажности и имеют более высокий уровень электролита, что приводит к низкому удельному сопротивлению почвы. Песчаные почвы, которые быстрее дренируют, имеют гораздо более низкое содержание влаги и уровень электролитов.Следовательно, они имеют более высокий импеданс. Твердая порода и вулканический пепел, например, найденный на Гавайях, практически не содержат влаги и электролитов. Эти почвы имеют высокий уровень удельного сопротивления, и трудно обеспечить эффективное заземление. См. Таблицу 1 (в оригинальной статье) для определения удельного сопротивления различных почв.

Измерение удельного сопротивления земли. Эффективность заземляющих стержней во многом зависит от того, может ли почва, окружающая стержни, проводить большие электрические токи.Чтобы правильно спроектировать подземную систему заземления, необходимо измерить удельное сопротивление земли с помощью прибора для измерения сопротивления заземления. Этот прибор также должен иметь переключатели для изменения диапазона сопротивления. Для измерения удельного сопротивления земли можно использовать различные методы испытаний, но наиболее распространенными являются три:

  • Четырехточечный метод, наиболее точный.

  • Глубинный вариационный метод (метод трех точек).

  • Двухточечный метод.

После определения удельного сопротивления почвы вы сможете лучше определить, какая схема подземного заземления будет наиболее эффективной.В зависимости от удельного сопротивления почвы и требований схемы заземления конкретная система может варьироваться от простого подземного заземляющего проводника до обширного заземляющего стержня. Последний мог включать в себя сеточную систему или заземляющее кольцо (рис. 2, в оригинальной статье). Для уменьшения импеданса системы заземления можно использовать материал для улучшения заземления или электроды химического типа.

Как добиться приемлемого заземления. Существуют различные варианты снижения удельного сопротивления почвы. Один из способов — увеличить влажность почвы.Удельное сопротивление верхнего слоя почвы может быть уменьшено на 800 Ом-м за счет увеличения влажности с 5% до 10%. Дополнительное снижение удельного сопротивления, хотя и намного меньшее, может быть получено путем увеличения влажности с 10% до 20%. Проблема с добавлением влаги в почву заключается в том, что в большинстве случаев это не практичный вариант.

Другой способ снизить удельное сопротивление земли — обработать почву солью, например сульфатом меди, сульфатом магния или хлоридом натрия. В сочетании с влагой соли выщелачиваются в почву, снижая удельное сопротивление почвы.Однако этот недорогой процесс также может вызвать проблемы. Во-первых, когда соли смываются, почва возвращается в необработанное состояние. В результате вам необходимо периодически заряжать систему. Во-вторых, некоторые соли могут вызвать коррозию заземляющих проводов. Наконец, соль может загрязнять грунтовые воды. Местные экологические нормы и Агентство по охране окружающей среды (EPA) могут возражать против добавления солей в почву.

Во многих местах обеспечить систему заземления с низким сопротивлением так же просто, как вбить заземляющий стержень в подповерхностный слой почвы, который имеет относительно постоянное и проводящее содержание влаги.Помните, что заземляющий стержень должен выступать ниже минимальной глубины промерзания. Вы также можете использовать материал для улучшения заземления для достижения приемлемого сопротивления системы (рис. 3 в оригинальной статье).

Что следует знать при использовании материала для улучшения грунта. Практически во всех почвенных условиях использование материала для улучшения грунта повысит эффективность заземления. Некоторые из них являются постоянными и не требуют обслуживания. Вы можете использовать их в областях с плохой проводимостью, таких как каменистая почва, горные вершины и песчаная почва, где нельзя использовать заземляющие стержни или где ограниченное пространство затрудняет адекватное заземление с помощью обычных методов.

Доступно несколько видов материалов для улучшения земли. Но будьте осторожны при выборе материала. Он должен быть совместим с заземляющим стержнем, проводом и соединительным материалом. Некоторые варианты включают бентонитовую глину, коксовый порошок и специально разработанные вещества.

Бентонит — это глинистое вещество, используемое в районах с высоким удельным сопротивлением почвы. Однако проводимость в бентонитовой глине происходит только за счет движения ионов. Ионная проводимость может происходить только в растворе, что означает, что бентонитовая глина должна быть влажной для обеспечения требуемых уровней сопротивления.Когда бентонитовая глина теряет влагу, ее удельное сопротивление увеличивается, а объем уменьшается. Эта усадка приводит к прерыванию контакта между бентонитовой глиной и окружающей почвой, что дополнительно увеличивает сопротивление системы.

Порошок кокса — другой выбор. Коксовый порошок, состоящий преимущественно из углерода, обладает высокой проводимостью. Однако грунтовые воды могут его смыть.

Некоррозионное вещество с низким сопротивлением, повышающее сопротивление, представляет собой проводящий цемент, который можно укладывать влажным или сухим.В зависимости от вещества, он не выщелачивается в почву и соответствует требованиям EPA для захоронения отходов. Этот материал успешно применяется в железнодорожной и коммунальной промышленности. При установке в сухом состоянии он впитывает влагу из окружающей почвы и затвердевает, удерживая влагу в своей структуре. При использовании в сухом виде перемешивание не требуется, а максимальная эффективность достигается за считанные дни. Это потому, что он поглощает достаточно воды из окружающей почвы. Вы также можете предварительно смешать его с водой до получения густого раствора.Вы можете добавить его в траншею, в которой находится заземляющий провод, или использовать его вокруг заземляющего стержня в усиленном отверстии. Материал связывает воду в цемент, образуя прочную массу с высокой проводимостью.

Некоторые продукты предлагают подтвержденное испытанием удельное сопротивление 0,12 Ом-м или ниже по сравнению с 2,5 Ом-м для бентонитовой глины. В отличие от бентонитовой глины, цементоподобный материал не зависит от постоянного присутствия воды; он также не требует периодической зарядки / замены.

Идеальный материал для улучшения грунта не требует обслуживания.При проектировании или установке подземной системы заземления ищите материалы, которые не растворяются и не разлагаются с течением времени, требуют периодической зарядки или замены или зависят от постоянного присутствия воды для поддержания проводимости.

Установка материалов для улучшения грунта. После выбора материала продумайте способ монтажа. Размещение материала для улучшения грунта происходит быстро и легко. Для установки вокруг стержня заземления (рис. 4, в оригинальной статье) используйте шнек диаметром 3 дюйма.до отверстия диаметром 6 дюймов до глубины на 6 дюймов меньше длины стержня. Опустите стержень в отверстие так, чтобы нижний конец был отцентрирован и вбивался в землю минимум на 12 дюймов. Подключите заземляющий провод к заземляющему стержню. Затем заполните большую часть отверстия материалом для улучшения грунта. Наконец, заполните оставшуюся часть ямы почвой, удаленной во время бурения.

Установка кондуктора в траншею включает шесть этапов, перечисленных ниже. См. Рис. 5 для получения дополнительных указаний.Если вы используете цемент проводящего типа для улучшения грунта, см. Расчетное количество погонных футов, которое можно получить из мешка с материалом для использования в качестве покрытия заземляющего проводника, в Таблице 2 (на странице 64P в исходной статье).

  1. Выкопайте траншею шириной не менее 4 дюймов и глубиной 30 дюймов или ниже линии замерзания, в зависимости от того, что глубже.

  2. Разложите достаточно материала для улучшения грунта (сухого или в виде суспензии), чтобы покрыть дно траншеи примерно на 1 дюйм глубиной.

  3. Поместите проводник поверх материала для улучшения заземления.

  4. Нанесите больше материала для улучшения заземления поверх проводника, чтобы полностью закрыть провод, примерно на 1 дюйм глубиной.

  5. Осторожно покройте грунтом материал для улучшения грунта на глубину около 4 дюймов, стараясь не обнажить провод.

  6. Утрамбуйте почву и засыпьте траншею.

Электроды химического типа — еще один вариант для сложных ситуаций с заземлением.Они состоят из медной трубки, заполненной солями, установленной в бурном отверстии или траншее. Электрод засыпан материалом для улучшения заземления. Медная трубка имеет отверстия в верхней и нижней части, а верхняя часть электрода остается открытой для атмосферы. Вода медленно растворяет соли, которые попадают в трубку через верхние отверстия, открытые для атмосферы. Солевой раствор с высокой проводимостью просачивается в почву из отверстий около дна трубы.

Материал засыпки обычно представляет собой бентонитовую глину или комбинацию бентонитовой глины внизу и описанного выше цементного раствора вверху.Электроды химического типа требуют периодической подзарядки солей. Хотя он и дороже заземляющего стержня, заключенного в цементный раствор, несколько длительных испытаний показывают, что химический электрод обеспечивает примерно такую ​​же эффективность.

Измерение установленных систем заземления. После установки вам может потребоваться измерить сопротивление заземления установленной системы. Имейте в виду, что NEC 1996 г., гл. 250-84, требуется один электрод, состоящий из стержня, трубы или пластины, который не имеет сопротивления заземления 25 Ом или менее, должен быть усилен одним дополнительным электродом типа, указанного в разделах 250-81 или 250-83.Всегда устанавливайте несколько электродов на расстоянии более 6 футов друг от друга.

Обслуживание системы заземления. Вам необходима эффективная программа проверок и периодического обслуживания, чтобы обеспечить непрерывность всей системы заземления. Обязательно регулярно осматривайте его, используя утвержденный инструмент для проверки заземления, чтобы проверить электрическое сопротивление и целостность.

3 Проблемы с электрическим заземлением, которые негативно влияют на надежность системы

Электрическое заземление — один из наиболее важных аспектов электропроводки вашего предприятия из-за рисков безопасности и повреждения оборудования, связанных с неправильным заземлением.

Заземление требуется для обеспечения пути с низким импедансом для тока в случае неисправности, поскольку электрический ток предпочитает путь с низким импедансом, а не с высоким импедансом. Состояние неисправности может возникнуть либо в реальной проводке объекта, либо в устройстве, которое подключено к проводке объекта. В любом случае электрическая система и заземление должны быть в состоянии устранить неисправность, чтобы избежать повреждения системы электропроводки или устройства и, что более важно, чтобы избежать любых рисков для людей, использующих любое устройство на объекте.

Система заземления является точкой отсчета для всех компьютерной логики и кабельных коммуникаций данных. В компьютерах и компьютерных сетях, внутренних компьютерных схем и данных кабельных соединений использовать землю в качестве точки отсчета для обработки данных. Если заземление для этих устройств или сетевых систем неправильное или «стабильное», то надежность системы будет поставлена ​​под угрозу, что может привести к зависаниям, программным и аппаратным сбоям и дорогостоящим простоям системы.

  1. Многочисленные проблемы могут повлиять на надежность системы, но три ключевых проблемы, связанные с заземлением, часто вызывают большинство проблем, которые отрицательно влияют на надежность системы:
    Ток заземления присутствует в системе заземления здания
    Эта ситуация обычно возникает, когда ошибка проводки присутствует внутри электрической панели или распределительной коробки, например, провода нейтрали и заземления соединены вместе, или, что еще хуже, они соединены вместе на одной шине в субпанели, что является нарушением Национального электрического кодекса (NEC) .Когда возникают эти типы ошибок, часть нейтрального тока от нейтрального проводника потенциально может передаваться на заземляющую проводку, что может представлять значительную угрозу безопасности. Кроме того, этот ток земли может вызвать сбои аппаратного обеспечения системы и блокировки, а также из-за нестабильных эталонных условий заземления в сети.
  2. Неправильная установка изолированной системы заземления (IG)
    Для оптимальной работы компьютерных систем требуется наличие «тихой» среды.Шум присутствует во всех электрических системах и вызван устройствами на объекте, которые могут вызвать скачки напряжения или тока. Шум в электрической системе определенно может повлиять на надежность, особенно для чувствительного электронного оборудования. Можно установить изолированную систему заземления, чтобы гарантировать, что объект обеспечивает малошумную среду для компьютеров и информационных систем; однако, если система IG не установлена ​​должным образом, это может вызвать серьезные проблемы, такие как контуры заземления и шум, которые могут вызвать блокировку системы и сбои передачи данных.
  3. Проблемы с напряжением нейтрали относительно земли
    Еще одно условие, которое часто возникает в сетевой системе, — это проблемы с напряжением нейтрали относительно земли. Это состояние обычно возникает, когда в компьютерной сети присутствуют длинные цепи. Устройства, подключенные к этим длинным цепям, в сочетании с падениями напряжения в цепях вызывают появление напряжения нейтраль-земля. Напряжение между нейтралью и землей делает опорную точку заземления для компьютера или компьютерной сети «нестабильной».Это нестабильное состояние печально известно тем, что вызывает зависания системы и условия отсутствия неисправностей, которые вызывают простои и высокие затраты на обслуживание.

Эксперты по надежности систем оценивают ваши системы и диагностируют потенциальные риски для заземления и других проблем с проводкой. Они могут предоставить обследование объекта, мониторинг мощности, анализ объема мощности и другие услуги по тестированию для выявления и исправления любых ошибок проводки.

Удар электрическим током на прессе для резки бумаги из-за плохого заземления


1.Заводское электроснабжение было от входящей трехфазной системы на 480 вольт. Он имел функцию защиты от замыкания на землю на входящих линиях. Питание пресса и конвейера осуществляется от заземленного трехфазного понижающего трансформатора, работающего по схеме треугольник-треугольник. В переключателе для пресса центральная фаза считывает 0,4 вольта на землю; два других считывают 240 вольт на землю. Сливной клапан на воздушной линии, прилегающей к коммутатору был использован в качестве опорного заземления.

2. Когда я посетил это место, я не обнаружил никаких электрических неисправностей, связанных с самим прессом.Сообщается, что подача к нему трехфазного заземленного треугольника на 240 вольт была отключена, когда произошла авария. Когда питание пресса было отключено, я нигде не обнаружил напряжения на землю. Также измеренное значение сопротивления земли на прессе составило 0,075 Ом.

3. Перед аварией конвейер был заземлен путем подключения к ведомому «заземляющему стержню», расположенному на выходе конвейера. После аварии обслуживающий персонал протянул неизолированный многожильный провод от рамы конвейера к основанию пресса.Это дало конвейеру хорошую основу через пресс для строительной стали. Измерения, проведенные мной с отключенным дополнительным проводом заземления, показали, что «стержень заземления» имел около 90 Ом по отношению к стальному каркасу здания. Таким образом, во время аварии конвейер не был надежно заземлен.

4. Если бы на конвейер было подано напряжение 120 вольт, а заземление было бы таким плохим, как я его измерил, ток утечки был бы небольшим. Используя I = V / R, при сопротивлении заземления 90 Ом ток будет около 1.33 ампера. Это не приведет к срабатыванию автоматического выключателя на 15 А, поэтому рама конвейера не будет отключена автоматически. Я не видел никаких доказательств на конструкции конвейера каких-либо электрических неисправностей.

5. Основным методом заземления пресса был зеленый провод 4-проводного гибкого кабеля, который вводится в коробку контакторов в верхней части пресса. Этот провод заземления был там во время аварии. После аварии обслуживающий персонал установил заземление внутри выключателя пресса.Оба этих заземляющих провода получают свое заземление, будучи прикрепленными болтами к внутренней части распределительной коробки в области фермы, где гибкий кабель подключается для питания пресса. Таким образом, они электрически связаны со строительной сталью, как и одна ветвь вторичной обмотки трансформатора, соединенного треугольником на 240 вольт.

6. Поскольку после аварии был проведен большой ремонт и переключение цепей, можно спросить, не спрятано ли что-нибудь. Я не верю в это, поскольку специалист по обслуживанию казался открытым и честным, и то, что он сделал, казалось, отвечало интересам хорошей электротехнической практики.

7. Я не нашел никаких доказательств утечки напряжения ни на конвейер, ни на пресс. Сообщалось, что во время аварии пресс-выключатель находился в положении «Выкл.». Конвейер не работал.

Мнение эксперта

1. Во время аварии пресс был надежно и надежно заземлен, а выходной конвейер — нет, поскольку он был подключен к заземляющему стержню, который имел высокое сопротивление к заземлению здания и электрической системы.

2. Выходной конвейер должен быть запитан из-за какого-либо электрического соединения из-за неисправной проводки той или иной природы.Как отмечалось выше, поскольку сопротивление заземления было таким же высоким, как и было, ток заземления был недостаточно высоким для отключения нормального автоматического выключателя, рассчитанного на 15 ампер. На стороне 240 В понижающего трансформатора не было автоматических выключателей типа «прерыватель замыкания на землю».

3. Я чувствовал, что основной причиной аварии было неправильное заземление рамы конвейера. Если бы он был должным образом заземлен, то все, что вызвало бы подачу напряжения на корпус, вызвало бы короткое замыкание, которое отключило бы защитное устройство цепи питания, тем самым устранив опасное состояние.

4. Основной ошибкой было использование приводного заземляющего стержня вместо соединения оборудования с каркасом здания в качестве заземления оборудования. Все системы заземления должны быть эффективно соединены друг с другом, чтобы обеспечить электрическую безопасность, требуемую всеми нормативами.


ОБ АВТОРЕ: Дэвид Н. Кобернусс, B.S.E.E., M.S.E.A., P.E.
D&B Kobernuss Consultants предоставляет инжиниринговые услуги по продаже, обслуживанию, запуску и сервисному обслуживанию промышленного оборудования, судебной экспертизе и даче свидетельских показаний экспертов.У нас более сорока пяти лет опыта работы в металлургической и прокатной промышленности с опытом проектирования, монтажа и обслуживания электродуговых печей, печей отжига, прокатных станов, технологических линий, электрических подстанций. Мы наняли и обучили персонал, наняли и курировали подрядчиков, выступили в качестве официального представителя компании по инженерным вопросам.

Авторские права Дэвид Н. Кобернусс, Б.С., М.С., П.Е.

Заявление об ограничении ответственности: несмотря на то, что были предприняты все усилия для обеспечения точности данной публикации, она не предназначена для предоставления юридических консультаций, поскольку отдельные ситуации будут отличаться и должны обсуждаться с экспертом и / или юристом. Для получения конкретной технической или юридической консультации по предоставленной информации и связанным темам, пожалуйста, свяжитесь с автором.

LearnEMC — Заземление

Правильное заземление — важный аспект проектирования электронной системы как с точки зрения безопасности, так и с точки зрения электромагнитной совместимости. Земля играет решающую роль в определении того, что произойдет в случае непреднамеренных неисправностей, электрических переходных процессов или электромагнитных помех. Правильные стратегии заземления также позволяют инженерам более эффективно контролировать нежелательные излучаемые излучения.

С другой стороны, неправильное заземление может подорвать безопасность и электромагнитную совместимость продукта или системы. За последние несколько десятилетий плохое заземление стало основной причиной сбоев системы, связанных с электромагнитной совместимостью.

Разработка хорошей стратегии заземления — довольно простой процесс. Итак, можно задаться вопросом, почему так много систем неправильно заземлены. Ответ прост: инженеры часто путают понятие заземления с другим важным понятием — текущей отдачей.Тот факт, что возвратные токопроводы в цифровой электронике часто обозначаются как заземление или GND, может сбивать с толку. Когда токопроводящие обратные токопроводы рассматриваются как заземляющие (или когда заземляющие проводники используются для обратных токов), результатом часто становится конструкция со значительными проблемами ЭМС.

Определение земли

Хорошая стратегия заземления начинается с четкого понимания цели заземления. Прежде всего, заземление служит опорным нулевым напряжением цепи или системы.Это хорошо понимали несколько десятилетий назад. В 1992 году Американский национальный институт стандартов (ANSI) определил такое заземление [1],

4.152 — заземление. (1) Прикрепление корпуса оборудования, рамы или шасси к объекту или конструкции транспортного средства для обеспечения общего потенциала. (2) Подключение электрической цепи или оборудования к земле или к некоторому проводящему телу относительно большой протяженности, который служит вместо земли.

Было хорошо известно, что земля является опорным потенциалом, а заземляющие проводники обычно не токоведущие.

Рисунок 1. Розетка на 110 В в США

В США розетки с заземлением на 110 В имеют три клеммы, как показано на Рисунке 1. Горячая клемма имеет номинальный потенциал 110 В среднеквадратического значения и обеспечивает ток питания. Клемма нейтрали имеет номинальный потенциал 0 В среднеквадратического значения и действует как возврат силового тока. Клемма заземления также имеет номинальный потенциал 0 Vrms, но не пропускает ток при нормальных условиях. Клеммы нейтрали и заземления подключены к проводам, идущим обратно к одной и той же точке в электрической сервисной коробке (точке, которая электрически соединена с землей вне здания).

Поскольку нейтральный и заземляющий провода идут в одно и то же место, они электрически взаимозаменяемы. Фактически, если бы они были электрически закорочены в розетке с однопроводным подключением обратно к сервисной коробке, было бы трудно обнаружить какую-либо разницу. Так зачем же прокладывать два провода вместо одного? Простой ответ заключается в том, что заземление и возврат тока — это две отдельные функции, которые обычно несовместимы. Значительные токи, протекающие в проводнике, могут помешать тому, чтобы он был надежным опорным потенциалом.

Возможно, наиболее важным моментом, который следует учитывать при заземлении в целях безопасности и ЭМС, является то, что заземление не является током возврата. Земля и ток — это очень важные концепции, но это не одно и то же. Земля НЕ ЯВЛЯЕТСЯ путем для возврата токов к их источнику. Земля — ​​это, по сути, эталон нулевого напряжения для цепей и систем продукта. Концепция заземления играет решающую роль при проектировании с точки зрения безопасности и электромагнитной совместимости.

Важность заземления для безопасности

Важной частью разработки безопасных электрических продуктов и систем является знание того, где и когда небезопасные напряжения могут появляться на различных проводящих поверхностях.С точки зрения безопасности, заземление является опорным нулевым напряжением, а напряжение на каждом другом проводе — это разница между его напряжением и землей. Для зданий ориентиром на землю обычно является земля под зданием (или буквально «земля» под зданием). Это удобно, потому что земля относительно велика, и все большие металлические конструкции (например, водопровод и кабели, проходящие через границу здания) легко соединяются или соотносятся с землей.

Строительные площадки обычно представляют собой металлические прутья, вбитые в землю возле входа в электроснабжение.Эти стержни подключены к коробке выключателя, от которой заземление распределяется на все электрические розетки через нетоковедущие провода. Они также соединяются с любым металлом, который распространяется по всему зданию, например с водопроводными трубами или строительной сталью.

Приборы или электрические изделия со значительной открытой металлической поверхностью обычно требуются для заземления металла на провод заземления, чтобы гарантировать, что он не может достичь опасного потенциала по сравнению с любым другим заземленным металлом в здании.Если происходит неисправность, которая вызывает короткое замыкание между проводом питания и оголенным металлом, заземление коробки выключателя обеспечивает протекание большого количества тока. Это заставляет выключатель размыкаться и обесточивает прибор.

Рис. 2. Схема, иллюстрирующая базовую работу GFCI.

Важно отметить, что этот метод обеспечения безопасности продуктов основан на хорошем соединении заземления розетки с блоком выключателя.В старых розетках может отсутствовать клемма заземления, и даже в новых розетках с неправильным подключением может отсутствовать заземление. По этой причине во многих продуктах используются конструкции, в которых для безопасной работы не требуется заземление. Изделия с двойной изоляцией спроектированы таким образом, чтобы гарантировать, что соединение питания не может закоротить на оголенный металл, за счет исключения оголенного металла и / или обеспечения срабатывания автоматического выключателя в случае короткого замыкания.

Также растет количество электротехнической продукции со встроенными устройствами прерывания цепи замыкания на землю (GFCI).GFCI работают, обнаруживая дисбаланс тока между проводами подачи и возврата питания. При первом признаке того, что дисбаланс тока превышает безопасный порог, GFCI отключает питание.

Заземление безопасности может совпадать с заземлением ЭМС, а может и не совпадать, но заземление для обеспечения безопасности может быть важным фактором, который следует учитывать при проектировании с учетом ЭМС. Например, в медицинских изделиях и промышленных средствах управления заземление цепи часто требуется изолировать от заземления шасси по соображениям безопасности.Это представляет собой уникальную конструктивную проблему для инженеров EMC, которые обычно хотят видеть все большие металлические объекты, хорошо соединенные на высоких частотах.

Важность заземления для электромагнитной совместимости

Проблемы ЭМС часто возникают из-за того, что два больших металлических объекта находятся под разным потенциалом. Потенциальная разница всего в несколько сотен микровольт между любыми двумя резонансными проводниками может привести к превышению допустимого уровня излучаемого излучения. Точно так же напряжения, индуцированные между двумя плохо соединенными проводниками, могут привести к проблемам с помехоустойчивостью.

Заземления в основном искусство, определяющие нулевой опорные напряжения и склеивание металлических предметов или схемы с этой ссылкой через низкий импеданс, не токопроводящую соединение. Правильная стратегия заземления ЭМС гарантирует, что большие металлические конструкции не могут двигаться относительно друг друга, что приведет к непреднамеренным излучениям или проблемам с защитой. Склеивание металлических предметов для поддержания на них одинакового потенциала и привязка всех внешних соединений к одному и тому же нулевому заземлению — это ключевой шаг к обеспечению электромагнитной совместимости большинства продуктов.

Наземные сооружения

Почти все электронные устройства и системы имеют наземную структуру. В зданиях это заземляющие провода, водопровод и металлоконструкции. В автомобилях и самолетах это металлический каркас или шасси. В большинстве компьютеров это металлическая опорная конструкция и / или корпус.

Структура заземления служит в качестве локальной ссылки нулевой вольт. Нельзя допускать, чтобы что-либо крупное и металлическое приобретало потенциал, значительно отличающийся от потенциала земли.Обычно это достигается путем прикрепления всех крупных металлических объектов к заземляющей конструкции на интересующих частотах. Этого также можно достичь, достаточно изолировав большие металлические объекты и убедившись, что нет возможных источников, которые могут вызвать развитие потенциала между ними.

Рисунок 3. Спутник с двумя солнечными батареями.

Например, рассмотрим спутник, показанный на рисунке 3. Его наземная структура представляет собой металлический корпус, в котором находится большая часть электроники.Чтобы передать значительную электромагнитную мощность на спутник или из него, необходимо установить напряжение между наземной структурой и чем-то еще значительного электрического размера. На частотах ниже нескольких сотен мегагерц единственными проводниками значительного электрического размера (кроме наземной конструкции) являются две группы солнечных панелей и, возможно, любые провода, соединяющие эти массивы с цепями внутри спутника.

Прикрепление массивов солнечных панелей к корпусу в точках, где они находятся в непосредственной близости, гарантирует, что между большими проводниками не возникнет значительных напряжений, которые могут служить непреднамеренно передающими или приемными антеннами для шума.Соединительные провода также необходимо прикрепить к заземляющей конструкции. Обычно это достигается с помощью шунтирующих конденсаторов, чтобы установить связь на частотах шума, в то же время позволяя токам мощности и сигнала течь без ослабления.

Стратегия заземления, примененная к спутнику в этом примере, может использоваться практически с любым другим устройством или системой, имеющей наземную структуру. Основная философия заключается в том, что сама наземная конструкция представляет собой половину непреднамеренной антенны.Излучаемая связь может возникать только в том случае, если между конструкцией заземления и другим проводящим объектом значительных электрических размеров возникает напряжение. Прикрепление всех объектов значительного электрического размера к заземляющей конструкции предотвращает их превращение в другую половину непреднамеренной антенны.

Эта стратегия заземления важна не только для удовлетворения требований к излучению и помехозащищенности, она также играет ключевую роль в соблюдении требований к кондуктивным помехам и помехоустойчивости, когда конструкция заземления является как опорным нулевым напряжением, так и предпочтительным путем для потенциально мешающих шумовых токов.

Три важных момента относительно наземных сооружений:

  1. Конструкция заземления должна быть хорошим проводником на интересующих частотах, но не должна быть электрически малогабаритной. Иногда вы можете услышать, как кто-то утверждает, что земли не существует на высоких частотах, потому что земля является эквипотенциальной поверхностью, а потенциал в двух точках на расстоянии четверти длины волны на поверхности неодинаков. Этот аргумент необоснован, потому что наземные конструкции не обязательно являются эквипотенциальными поверхностями в этом смысле.Фактически, вся концепция однозначно определяемой разности потенциалов между двумя удаленными точками разваливается на высоких частотах.

    Земля служит защитным заземлением для большинства систем распределения электроэнергии, даже если земля определенно не является электрически малой при 50 или 60 Гц. Неважно, что потенциал Земли в Лос-Анджелесе не такой, как в Нью-Йорке. Наземные конструкции служат в качестве местных источников нулевого напряжения. Они не должны быть электрически маленькими.

  2. Конструкция заземления не должна закрывать электронику.Наземная конструкция не является защитным ограждением. Это просто что-то большое и металлическое, которое служит локальным источником нулевого напряжения для всего остального, большого и металлического.

  3. Конструкция заземления не может пропускать преднамеренные токи (по крайней мере, с интересующими амплитудами и частотами). Токи, протекающие по проводнику или внутри него, заставляют магнитный поток наматывать проводник. Магнитный поток, охватывающий проводник, индуцирует на нем напряжение. На высоких частотах это напряжение потенциально может управлять одной частью конструкции заземления относительно другой части.

Наземные конструкции могут проводить токи с частотами и амплитудами, которые не влияют на их эффективность как наземные конструкции. Например, в большинстве автомобилей рама используется в качестве пути обратного тока для огней и некритичных датчиков, работающих на очень низких частотах. Это не ухудшает способность рамы служить заземляющей структурой на более высоких частотах.

Важно отметить, что, хотя конструкция заземления не может пропускать преднамеренные токи, ожидается, что она будет пропускать токи короткого замыкания и токи индуцированного шума.Фактически, правильное использование конструкции заземления зависит от ее способности переносить непреднамеренные токи с достаточно низким импедансом, чтобы контролировать непреднамеренные напряжения.

Заземляющие провода

Заземляющие проводники — это соединения (например, винты, болты, прокладки, провода или металлические ленты), которые крепят большие металлические предметы к заземляющей конструкции. Подобно наземным сооружениям, заземляющие проводники не проводят преднамеренных токов. Их функция — поддерживать напряжение между двумя металлическими конструкциями ниже критического значения.

Заземляющие проводники должны иметь достаточно низкий импеданс (т. Е. Сопротивление плюс индуктивное реактивное сопротивление), чтобы их полное сопротивление, умноженное на максимальный ток, который они могли бы нести, было ниже минимального напряжения, которое может привести к проблеме ЭМС. Например, предположим, что экран экранированной витой пары проводов подключен к заземляющей конструкции через 1-сантиметровый контактный штырь, как показано на рисунке 4. Витая пара проводов передает псевдодифференциальный сигнал 100 Мбит / с с синфазным шумом. ток 0.3 мА при 100 МГц. Напряжение, управляющее экраном кабеля относительно платы, приблизительно равно току, возвращающемуся в экран, умноженному на эффективную индуктивность соединения экрана. Предполагая, что эффективная индуктивность контакта разъема составляет приблизительно 10 нГн (т.е. 1 нГн / мм), напряжение, управляющее экраном кабеля относительно заземляющей конструкции, составляет приблизительно 2 милливольта. Во многих ситуациях этого достаточно, чтобы превысить предел излучаемых излучений на частоте 100 МГц, и необходимо будет предпринять шаги для уменьшения синфазного шума или уменьшения индуктивности соединения заземляющего проводника.

Рисунок 4. Витая пара с экраном, подключенным к заземляющей конструкции.

Гальваническая коррозия

Когда заземляющее соединение выполняется путем соединения болтами двух плоских металлических поверхностей, сопротивление соединения может быть более важным, чем индуктивность. Это особенно верно, когда поверхность раздела между ними подвергается коррозии.

Потенциал гальванической коррозии — это мера того, насколько быстро разнородные металлы будут корродировать при контакте.Коррозия зависит от наличия электролита, например воды; а скорость коррозии зависит от многих факторов, включая свойства электролита.

Рисунок 5. Анодные индексы для обычных металлов.

На диаграмме на Рисунке 5 указаны анодные индексы нескольких распространенных металлов рядом с их названиями. Этот параметр является мерой электрохимического напряжения, которое возникает между металлом и золотом. Чтобы найти относительное напряжение пары металлов, их анодные индексы вычитаются, как указано в таблице.В зависимости от окружающей среды соединения между материалами с разницей напряжений более 0,95 В обычно требуют покрытия или прокладок для сохранения целостности соединения с течением времени.

Земля против обратного тока

Как указано в начале этой главы, заземление и возврат тока — это две очень разные функции. К сожалению, в реальных изделиях многие токопроводы имеют маркировку «заземление». Это создает большую путаницу, поскольку правила, относящиеся к земле, применяются к текущим доходам и наоборот.

Например, схематическая часть платы на рисунке 6 имеет четыре разных заземления. Один компонент работает с сигналами или мощностью, которые относятся к трем из этих заземлений. Маловероятно, чтобы разработчик этой схемы хотел четыре разных источника нулевого напряжения. Фактически, четыре заземления соединены перемычками, что указывает на то, что разработчик намеревался иметь одну опорную цепь нулевого напряжения.

Рисунок 6. Частичная схема с четырьмя заземлениями.

Компоновка платы, показанная на Рисунке 7, показывает слой с двумя изолированными цепями, помеченными «GND» и «AGND».Изоляция заземления затрудняет поддержание одинакового потенциала всех крупных металлических объектов в системе. Как правило, это следует делать только в случае необходимости из соображений безопасности. Так почему же эти «земли» изолированы?

Рисунок 7. Один слой разводки платы с двумя заземлениями.

В двух приведенных выше примерах причина того, что «наземные» сети были изолированы, заключается в том, что они не были на самом деле заземлением. Они были обратными проводниками для силовых или сигнальных токов.Разработчикам не нужны были изолированные источники нулевого напряжения. Они изолируют обратные токопроводы, пытаясь избежать связи по общему сопротивлению.

Около 50 лет назад, когда цифровые схемы только начинали внедряться в такие продукты, как радиоприемники и высококачественное аудиооборудование, разработчики электроники быстро поняли, что цифровой шум может быть связан со звуковыми цепями, если они используют одни и те же возвратные проводники. . Например, рассмотрим простую доску, показанную на рисунке 8a.Он имеет два цифровых компонента: цифро-аналоговый (ЦАП) преобразователь и усилитель для усиления аналогового сигнала перед его отправкой с платы через разъем. Несимметричный цифровой сигнал между двумя цифровыми компонентами использует землю в качестве обратного пути. На частотах килогерц и ниже возвратный по плоскости ток распространяется с распределением, примерно представленным зелеными линиями на рисунке 8b. Низкочастотный ток, возвращающийся от усилителя к цифро-аналоговому преобразователю, следует по пути, примерно представленному синими линиями на рисунке 8b.

Рис. 8. Простая плата смешанного сигнала слева (а) и примерное распределение обратного тока на заземляющем слое (b).

В текущем распределении явно много общего. Это приводит к общему сопротивлению, поскольку токи в одной цепи имеют общее сопротивление заземляющей поверхности с токами в другой цепи. Если бы общее сопротивление заземляющей поверхности было порядка 1 мОм, а цифровые токи были порядка 100 мА, то индуцированное напряжение в аналоговых цепях было бы порядка 100 мкВ.

Пятьдесят лет назад инженеры, проектирующие аудиосхемы, заметили, что напряжения, наведенные в аудиосхемах из-за связи общего импеданса с цифровыми схемами, часто были неприемлемыми. В акустическом сигнале люди слышали цифровой шум.

Очевидным решением было изолировать обратные токи цифрового сигнала от обратных токов аналогового сигнала. Платы с более чем двумя слоями не были распространены в то время, поэтому популярным подходом было разделение текущей возвратной плоскости.Пример этого показан на рисунке 9.

Рис. 9. Плата смешанного сигнала с зазором в плоскости обратного тока слева (а) и приблизительным распределением обратного тока на плоскости заземления (b).

Поскольку токи низкой частоты не могут проходить через зазор, токи перенаправляются по обе стороны от зазора. Это снижает плотность цифрового обратного тока в области плоскости, используемой в основном для аналоговых токов, и значительно снижает связь по общему импедансу.

На относительно простых двухслойных платах 1960-х и 1970-х годов зазор между аналоговыми и цифровыми схемами часто был эффективным способом устранения неприемлемых перекрестных помех из-за связи общего импеданса. К сожалению, это сработало настолько хорошо, что люди в конце концов пришли к мысли, что между цифровыми и аналоговыми цепями всегда должен быть промежуток между заземляющими элементами. Так родилось правило дизайна, и дизайнеры досок любят правила дизайна. Пятьдесят лет спустя многие дизайнеры плат по-прежнему придерживаются этого правила дизайна, хотя оно больше не имеет смысла.Фактически, лучшее правило проектирования современных плат — никогда не допускать зазора между аналоговыми и цифровыми схемами между заземляющим слоем.

Чтобы проиллюстрировать, почему это так, рассмотрим компоновку платы на рисунке 10. Она состоит из тех же компонентов, что и в предыдущем примере, и, как и в предыдущем примере, имеет зазор между аналоговой и цифровой схемами. Однако в этом случае зазор окружает аналоговую схему с трех сторон.

Рис. 10. Ужасно смешанная компоновка сигнальной платы слева (а) и гораздо лучшая альтернативная компоновка справа (b).

График обратных токов, как это было сделано в предыдущем примере, проиллюстрирует отличную развязку между цифровым и аналоговым обратным токами. Но предыдущие графики обратного тока не учитывали все токи в плоскости. Обратите внимание, что есть четыре цифровых дорожки, соединяющих цифро-аналоговый преобразователь с одним из цифровых компонентов. Для этих сигналов также требуются обратные токи. Эти токи должны поступать от контакта заземления ЦАП на контакт заземления цифрового компонента.Раньше этот путь был коротким и несущественным, но теперь зазор заставляет эти токи делить ту же область плоскости, что и аналоговые токи. Вместо того, чтобы улучшить ситуацию, этот пробел потенциально усугубляет ситуацию.

Правильное определение зазора между аналоговыми и цифровыми цепями имеет решающее значение. Пятьдесят лет назад часто было трудно определить правильное место для разрыва. В современных платах с высокой плотностью зазоры между плоскостями, как правило, нереально и совершенно ненужно для решения несуществующей проблемы.

Есть по крайней мере три причины, по которым в современных конструкциях плат нет необходимости в зазоре в заземляющем слое:

  1. Цифровые и аналоговые сигналы, как правило, работают на гораздо более высоких частотах, чем 50 лет назад. На частотах выше примерно 100 кГц обратные токи на заземляющем слое ограничиваются областями непосредственно под дорожками сигнала. Поскольку они не распространяются по плоскости, зазоры между плоскостями не улучшают изоляцию между цепями.

  2. Даже на частотах кГц и ниже сопротивление заземляющих поверхностей печатной платы составляет менее 1 мОм / квадрат . Это означает, что «шумные» схемы, сбрасывающие ток в амперах на заземляющую пластину, способны вызывать только милливольты (наихудший случай) напряжения в других схемах, находящихся в той же плоскости. Существует относительно немного ситуаций, когда такой уровень шумовой связи может стать проблемой.

  3. В тех ситуациях, когда миллиом муфты недопустим, гораздо лучше изолировать возврат на другом слое .Например, лучшим решением проблемы сцепления в нашем предыдущем примере было отсутствие зазора между плоскостью. На рисунке 10b показано, как возврат аналогового тока с помощью дорожки на верхнем слое полностью позволяет избежать общей проблемы связи импеданса. В платах с большим количеством аналоговых и цифровых возвратов, которые должны быть изолированы на низких частотах, обычно необходимо соединять их на высоких частотах, чтобы предотвратить проблемы с излучением. Маршрутизация изолированных возвратных сигналов на соседних слоях значительно упрощает установление между ними хорошего высокочастотного соединения.

Обратите внимание, что аналоговая линия возврата тока на рис. 10b подключена к плоскости цифрового возврата тока с помощью одного переходного отверстия, расположенного рядом с выводом заземления ЦАП. Переходное отверстие не несет аналоговых или цифровых обратных токов. Его единственная функция заключается в обеспечении, что аналоговые и цифровые схемы имеют тот же опорный нуль вольт. Другими словами, переходное отверстие является заземляющим проводником, тогда как плоскость и дорожка являются токопроводящими проводниками.

Одноточечное и многоточечное заземление

Предположим, что аналоговая трасса возврата тока на рисунке 10b имеет два сквозных соединения с цифровой плоскостью возврата тока, как показано на рисунке 11.Теперь аналоговый обратный ток имеет два возможных пути. Он может вернуться по следу или может вернуться в самолете. Ток будет разделен в соответствии с сопротивлением каждого пути, позволяя значительному количеству аналогового тока возвращаться в плоскость. Аналогичным образом, некоторый цифровой ток будет течь по аналоговой обратной линии тока. Изоляция разрушается, и снова вводится связь по общему импедансу.

Рис. 11. Добавление второго соединения между двумя изолированными возвратными токами может означать, что они больше не изолированы на низких частотах.

Вообще говоря, два пути возврата тока не изолированы на низких частотах, если они соединены более чем в одной точке. Сквозное соединение на рисунке 10b является примером одноточечного заземления. Одноточечное заземление — важная концепция в ЭМС, хотя ее часто неправильно понимают проектировщики, которые не проводят должного различия между проводниками с обратным током и заземляющими проводниками.

Рисунок 12. Одноточечное заземление.

Рисунок 12 иллюстрирует концепцию одноточечного заземления.Изолированные цепи или системы связаны с одной точкой через нетоковедущие заземляющие проводники. На рисунке 13 показана другая реализация, в которой заземляющие проводники подключаются более чем в одной точке, но все они по-прежнему привязаны к одной точке. Одним из примеров этого является заземление в зданиях. Каждое заземленное устройство имеет выделенный проводной путь к электросети здания, но параллельные пути создаются водопроводными соединениями или изделиями, внешние металлические поверхности которых находятся в электрическом контакте.Подключение заземляющих проводов более чем в одной точке не снижает эффективности схемы заземления.

Рис. 13. Еще одна реализация с одноточечным заземлением.

В то время как в одной точке заземления является важным понятием для обеспечения того, чтобы отдельные цепи имеют ту же ссылку ноль вольт, он не работает, если заземлители нести сигнал или силовые токи. Например, на рисунке 14 средняя и правая цепи не изолированы.Токи, возвращающиеся от нагрузки к источнику средней цепи, теперь имеют возможность вернуться через намеченный синий провод или пройти по дополнительному соединению в правую цепь и обратно в среднюю цепь через «одноточечную» землю.

Рис. 14. Это НЕ одноточечное заземление.

Путь на рисунке 14 от одноточечного соединения к средней цепи к правой цепи и обратно к одноточечному соединению иногда называют контуром заземления.Контуры заземления часто считаются несовместимыми с одноточечным заземлением и часто упоминаются как источник связи общего сопротивления; но это неверно. На рисунке 13 показан контур заземления, и он по-прежнему является хорошей реализацией одноточечного заземления. Контур заземления на Рисунке 14 включает в себя сегмент, который вообще не заземлен. Синий провод в средней цепи может называться «землей» на схеме платы, но это проводник для обратного тока.

Как правило, контуры заземления хороши, если все проводники в контуре действительно являются проводниками заземления.Если один или несколько проводников в петле представляют собой низкочастотный обратный проводник, то все проводники в петле будут нести часть этого обратного тока. Это может облегчить связь по общему сопротивлению.

На рисунке 15 показан еще один пример неправильного применения концепции единой точки заземления. Этот пример взят из инструкции производителя по применению, в которой покупателям предлагается, как расположить драйвер трехфазного двигателя. Идея состояла в том, чтобы убедиться, что все три фазы имели ту же ссылку нулевой вольт в качестве двигателя.Реализация призвала вернуть все токи переключения и ток двигателя в одну и ту же точку.

Рис. 15. Одноточечный возврат по току (плохая идея).

Конечно, это не одноточечное заземление. Это одноточечный текущий возврат. Хотя все проводники помечены как заземление на схеме и на плате, они не являются заземлением. Это токопроводы с обратным током.

Отправка всех коммутируемых токов в одну точку схемы в основном гарантирует, что индуктивность соединения будет выше, чем она была бы в противном случае.Это обеспечивает высокий общий импеданс, а также взаимную индуктивность между фазами. Это также гарантирует, что ни одна из фаз или двигатель будет иметь ту же ссылку ноль вольт.

В принципе, это важно помнить, что одна точка заземления является важной стратегией для обеспечения того, чтобы выделенные схемы и устройства имеют ту же ссылку нулевой вольт. С другой стороны, одноточечные возвратные токи часто являются основной причиной серьезных проблем электромагнитной связи.

Рисунок 16.Многоточечная земля.

Альтернативой стратегии одноточечного заземления является стратегия многоточечного заземления. Пример этого показан на рисунке 16. Вместо одной точки земля определяется локально. По сути, это концепция наземной конструкции, описанная ранее.

Обычно системы, использующие заземляющую структуру, подключают цепи и модули, которые не изолированы от заземляющей конструкции более чем в одной точке. Простой пример этого показан на рисунке 17.

Рис. 17. Гибридная стратегия заземления.

В этом случае соединение между средней и правой цепями позволяет низкочастотным обратным токам течь по заземляющей конструкции. На этих частотах структуру правильнее было бы описать как структуру с обратным током. При разработке стратегии заземления важно понимать, что проводящая конструкция может выполнять функцию заземления на одних частотах и ​​функцию возврата тока на других.

Например, в автомобиле средняя и правая цепи на рисунке 17 могут представлять модуль управления тормозами и датчик скорости вращения колеса соответственно. Каждый из них заземлен на раму автомобиля, чтобы соответствовать требованиям по излучению и эмиссии на высоких частотах, но ни один модуль не позволяет токам высокой частоты возвращаться на раму. Так что на высоких частотах рама представляет собой многоточечную наземную структуру.

На более низких частотах критическая связь будет осуществляться с использованием дифференциальных сигналов, чтобы токи сигналов не попадали в кадр (и токи кадра не попадали в сигналы).Тем не менее, основания власти не обязательно будут изолированы. Силовые токи, поступающие в модули по 12-вольтовым проводам питания, возвращаются в аккумулятор по всем доступным путям. Таким образом, на низких частотах (например, постоянный ток — кГц) рама не является наземной структурой, это структура с током возврата. Силовой ток, протекающий по корпусу от одного модуля, может вызвать сотню милливольт на заземляющих соединениях других модулей, но большинство модулей не будут подвержены влиянию сотен милливольт на очень низких частотах.

Предположим, что схема слева на рисунке 17 представляет распределение мощности на стартер для двигателя внутреннего сгорания. Эта схема может потреблять сотни ампер тока при запуске двигателя. Если позволить этим токам вернуться на раму транспортного средства, это может привести к недопустимому уровню шума в модулях, использующих раму в качестве обратного проводника силового тока. В этом случае можно было бы принять решение изолировать возврат от стартера и подключить его к раме в одной точке.

Стратегии заземления

Возможно, самый важный момент, на который следует обратить внимание в отношении стратегий заземления, будь то для электромагнитной совместимости или безопасности, — это то, что разрабатываемый продукт должен иметь его. Проблемы обычно возникают, когда с заземляющим проводом обращаются как с токоотводящим проводником или с токоотводящими проводниками как с заземляющими проводниками.

Правильные стратегии возврата тока обычно сосредоточены на обеспечении путей с низкой индуктивностью для высокочастотных токов и поддержании контроля над путями низкочастотных токов.

Собственные стратегии заземления фокус на выявлении и защиты ссылку нулевой вольт для каждого контура и системы.

Один из способов отследить, выполняют ли проводники в первую очередь функцию заземления или функцию возврата тока, — это соответствующим образом пометить их. Например, назовите соединение с заземляющей структурой «заземление шасси» или «шасси-GND», но используйте термин «цифровой возврат» или «D-RTN» для обозначения плоскости на печатной плате, основная функция которой — возврат цифровых токов. к их источнику.Половина успеха в разработке хорошей стратегии заземления — это правильное признание и сохранение целостности истинных оснований.

Еще одним важным аспектом любой стратегии заземления является определение конструкции грунта. На уровне системы наземная конструкция всегда представляет собой металлический корпус или каркас, если таковой имеется. На уровне платы, если плата подключается к раме, то заземление платы должно быть там, где это соединение происходит. Если нет рамы или нет близости к раме, заземление платы обычно должно быть определено на одном из контактов разъема (часто вход питания 0 В).

Вообще говоря, все крупные металлические предметы (например, кабели, большие радиаторы, металлические опоры и т. Д.) Должны быть прикреплены к заземляющей конструкции. Если это невозможно, они должны быть достаточно изолированы от наземной конструкции, чтобы гарантировать отсутствие значительного нежелательного сцепления. Медицинские изделия и многие высоковольтные системы требуют строгой изоляции между корпусом или шасси и любыми токоведущими цепями. К сожалению, для близлежащих высокочастотных цепей относительно легко навести в этих структурах ток в микроамперах, которого достаточно, чтобы вызвать проблемы излучаемого излучения.Предотвращение этого без привязки к корпусу обычно требует ограничения полосы пропускания схемы, экранирования схемы и / или увеличения расстояния между схемой и корпусом.

Список литературы

[1] Американский национальный стандартный словарь технологий электромагнитной совместимости (EMC), электромагнитного импульса (EMP) и электростатического разряда (ESD), ANSI C63.14-1992.

Почему следует надежно заземлять электрическую систему

У вас дома много электроприборов? Защищены ли они от повреждений? Мы говорим не о физическом повреждении, вызванном их случайным падением или поломкой, а скорее об электрическом повреждении.При возникновении перегрузок, скачков напряжения или даже в экстремальных погодных условиях, таких как молния и т. Д., Ваши электрические устройства будут подвержены риску возгорания из-за проходящего через них чрезмерного электричества.

Вот почему вам следует заземлить электрические устройства. Заземление обеспечивает путь чрезмерному электричеству, чтобы течь к земле вместо вас или любого электрического устройства, тем самым предотвращая поражение электрическим током или повреждение. Расскажем, как это работает.

Как работает заземление?

В любой электрической цепи есть активный провод, который подает питание, нейтральный провод, который передает этот ток обратно, и «заземляющий провод», который обеспечивает дополнительный путь для электрического тока, который безопасно возвращается в землю, не создавая опасности для кого-либо в в случае короткого замыкания.Медный проводник подсоединяется от металлического стержня системы электропроводки к набору клемм для заземления в сервисной панели.

Если в системе электропроводки используются электрические кабели, покрытые металлом, то металл обычно служит заземляющим проводом между розетками и сервисной панелью. Однако, если в системах электропроводки используется кабель в пластиковой оболочке, то для заземления используется дополнительный провод. Электричество всегда ищет кратчайший путь к земле, поэтому, если есть какая-либо проблема, когда нейтральный провод оборван или оборван, то именно заземляющий провод обеспечивает прямой путь к земле.Это прямое физическое соединение позволяет земле действовать как путь наименьшего сопротивления и предотвращать превращение прибора или человека в кратчайший путь.

Важность заземления

  • Защищает от электрических перегрузок Вы можете время от времени испытывать скачки напряжения или подвергаться воздействию молнии в экстремальных погодных условиях. Эти события могут привести к возникновению опасно высокого электричества, которое может полностью повредить ваши электроприборы.При заземлении электрической системы все избыточное электричество будет уходить в землю вместо того, чтобы поджаривать подключенные к системе приборы. Техника будет безопасна и защищена от сильных скачков напряжения.
  • Стабилизирует уровни напряжения Когда вы заземляете электрическую систему, вам легче распределять нужное количество энергии в нужных местах. Это гарантирует, что цепи не будут перегружены ни в какой момент и не выйдут из строя в результате этого. Землю можно рассматривать как общую точку отсчета для источников напряжения в любой электрической системе.Это помогает обеспечить стабильные уровни напряжения во всей электрической системе.
  • Земля проводит с наименьшим сопротивлением
    Одна из основных причин, по которой вы должны заземлять свои электрические приборы, заключается в том, что земля является отличным проводником и может проводить весь избыток электричества с наименьшим сопротивлением. Когда вы заземляете электрическую систему и подключаете ее к земле, это означает, что вы даете избытку электричества идти куда-то без сопротивления, а не через вас или ваши приборы.
  • Предотвращает серьезные повреждения и смерть Если вы не заземлите электрическую систему, вы подвергнете свои приборы и даже свою жизнь большому риску. Когда через какое-либо устройство проходит высокое электричество, оно поджаривается и не подлежит ремонту. Чрезмерное количество электричества может даже вызвать пожар, подвергнув опасности ваше имущество и жизнь ваших близких.

Если у вас есть проблемы с заземлением дома, свяжитесь с нами в D&F Liquidators. Мы оказываем помощь во всем, что связано с электрической системой.Мы проверяем, надежно ли заземлена ваша система, и обеспечиваем безопасность вашего дома и семьи, устраняя при необходимости серьезные проблемы с заземлением.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, фитингов кабелепровода, автоматических выключателей, распределительных коробок, проводного кабеля, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Поделитесь этой историей, выберите платформу!

Заземление антенны »Примечания по электронике

Заземление антенны или система заземления могут быть ключом к ее работе, а также ключевым элементом безопасности.


Заземление антенны Включает:
Как заземлить антенну Антенна RF земля Заземляющий слой антенны


Знание того, как заземлить антенную систему, может быть ключевым фактором в работе некоторых антенн.

Знание того, как правильно заземлить антенну, может значительно улучшить ее производительность, тогда как плохое заземление или заземление может означать, что ее производительность значительно ухудшится.

Правильное заземление антенны делает ее безопасной в использовании, а также позволяет максимально эффективно использовать ее характеристики.


Как заземлить антенну

Есть несколько аспектов заземления антенны. При выборе способа заземления антенны необходимо определить, что требуется, и действовать соответственно:

  • Как заземлить антенну для радиочастотных характеристик: Некоторые типы антенн несбалансированы и предназначены для работы с заземлением, чтобы обеспечить их правильную работу. Симметричные антенны, такие как диполи, не нуждаются в ВЧ-заземлении для их правильной работы, пока синфазные токи не выходят из фидера.Однако многие вертикальные антенны и многие провода с торцевым питанием используют свое ВЧ заземление как неотъемлемую часть антенны. Для подобных систем обязательно должно быть выполнено хорошее заземление.
    • Физическая система заземления: Физическая система радиочастотного заземления создается путем прямого контакта с землей. Поскольку проводимость земли относительно низкая, проводник должен обеспечивать хорошую площадь поверхности. Объем, в котором может иметь место проводимость, огромен, и поэтому после того, как было выполнено хорошее соединение с землей, фактическое сопротивление может быть низким, даже если удельное сопротивление материала заземления велико.. . . . .Подробнее о заземлении антенны RF.
    • Плоскость заземления: Многие вертикальные антенны используют так называемую плоскость заземления. Это имитация заземления, сделанная из листа проводника, который обычно простирается на четверть длины волны от антенны. Часто проводник моделируется множеством радиалов, часто длиной в четверть длины волны. . . . . .Подробнее о заземляющем слое антенны .
  • Как заземлить антенну в целях безопасности: Антенна — это металлический предмет, который иногда может оказаться под напряжением.Это может быть результатом подключения к оборудованию, которое выходит из строя и подает напряжение на антенну. Это могло произойти в результате аварии на линиях электропередач под напряжением. Все это происходило в прошлом и могло представлять опасность.
  • Как заземлить антенну при молнии: Возникновение молнии — это реальность. Есть много впечатляющих фотографий, на которых молния поражает высокие здания или даже просто ударяет о землю. Удар молнии может иметь очень разрушительный эффект.С обычными уровнями тока, повышающимися примерно до 3 000–140 000 ампер, неудивительно, что где-либо, получившее прямой удар, оказывается поврежденным. Даже если прямого удара не произошло, индукционные напряжения могут быть очень высокими.
    Удар молнии
    Фотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия

Какой бы ни была причина необходимости заземления антенны, во многих случаях это требуется. При заземлении антенны необходимо знать, как правильно заземлить антенну.

Другие темы об антеннах и распространении:
ЭМ волны Распространение радио Ионосферное распространение Земная волна Рассеивание метеорита Тропосферное распространение Кубический четырехугольник Диполь Дискон Ферритовый стержень Логопериодическая антенна Антенна с параболическим рефлектором Вертикальные антенны Яги Заземление антенны Коаксиальный кабель Волновод КСВН Балуны для антенн MIMO
Вернуться в меню «Антенны и распространение».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *