Классификация жидкостей: ЖИДКОСТИ, ИХ ВИДЫ И СВОЙСТВА. — Студопедия

Содержание

Жидкости — это… Что такое Жидкости?

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в тоже время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из части относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Испарение – постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация – обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация – неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространятся упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость – внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости звтухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торичелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P и температурой T. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T) и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T). Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где n — число частиц в единице объёма, — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Wikimedia Foundation.
2010.

Жидкость — Википедия

Жи́дкость — вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями[1].

При этом агрегатное состояние жидкости как и агрегатное состояние твёрдого тела является конденсированным, т. е. таким, в котором частицы (атомы, молекулы, ионы) связаны между собой.
Основным свойством жидкости, отличающим её от веществ, находящихся в других агрегатных состояниях, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[2].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём. Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Волны на поверхности воды

Если сместить участок поверхности жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ею можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P{\displaystyle P} и температурой T{\displaystyle T}. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T){\displaystyle E_{kin}(P,T)} и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T){\displaystyle E_{int}(P,T)}. Для жидкостей эти энергии приблизительно равны: Eint≈Ekin;{\displaystyle E_{int}\,\approx \,E_{kin};} для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий(натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

3. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

4. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

5. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из не простых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[3][4][5]. У неньютоновской жидкости вязкость зависит от градиента скорости.[6][7]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d{\displaystyle d}, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

PnkT=1+η+η2(1−η)3,{\displaystyle {\frac {P}{n\,k\,T}}={\frac {1+\eta +\eta ^{2}}{(1-\eta )^{3}}}\quad ,}
где n{\displaystyle n} — число частиц в единице объёма, η=(1/6)πnd3{\displaystyle \eta =(1/6)\,\pi \,n\,d^{3}} — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: P/nkT=1{\displaystyle P/n\,k\,T=1} . Для предельно больших плотностей, η→1{\displaystyle \eta \to 1}, получается уравнение состояния несжимаемой жидкости: V=const{\displaystyle V\,=\,const} .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Тепловые колебания атомов в решетке кристалла: точки — атомы, соединяющие линейные отрезки — межатомные связи
Поведение атомов жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)[8]

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия.
При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

По другому представлению[9][10] в основе кластерной теории жидкости, как о веществе, находящемся в конденсированном (связанном) состоянии (сохранение объёма), а не в состоянии «газоплотного» беспорядка, лежит представление о кластерах, как остаточных после перехода через точку плавления квазикристаллических динамических структурах с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, обеспечивающих сохранение объёма и определяющих подвижность (текучесть) и химическую активность жидкости. С ростом температуры количество атомов в кластерах уменьшается за счет увеличения разорванных связей. Образующиеся свободные атомы (молекулы) испаряются с поверхности жидкости или остаются в межкластерном пространстве в качестве растворённого газа (пара). При температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное (парообразное) состояние.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Примечания

  1. Жидкость — статья из Физической энциклопедии
  2. ↑ В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  3. ↑ «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  4. ↑ Физическая энциклопедия: Ньютоновская жидкость
  5. Ньютоновская жидкость — статья из Физической энциклопедии
  6. ↑ Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  7. ↑ Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978
  8. Андреев В. Д. Избранные проблемы теоретической физики.. — Киев: Аванпост-Прим,. — 2012.
  9. Андреев В. Д. Крэш (crash)-конформационная кинематика ковалентной решетки алмаза при плавлении. // Журнал структурной химии. — 2001. — № 3. — С. 486-495.
  10. Андреев В. Д. «Фактор плавления» при межатомных взаимодействиях в алмазной решетке. // Химическая физика. — 2002. — № 8,т.21. — С. 35-40.

Ссылки

Классификация жидких сред — Студопедия

Жидкие среды организма

Организм человека содержит большое количество жидкостей — водных растворов. На долю воды приходится до 59-65% от массы взрослого организма в среднем возрасте, а в момент рождения количество воды может достигать 70-75%. По мере старения ее содержание уменьшается, но в любом случае не становится меньше 50%. Водные растворы, располагаются в цитоплазме клеток (интрацеллюлярная среда), в межклеточном пространстве (тканевая жидкость), в полостях организма (полостях суставов, в грудной, брюшной полости и др.), а также локализованы в специальных системах — в лимфатической, мочевыделительной, системе кровообращения. Характерной особенностью всех без исключения жидких сред является их непрерывное движение, обеспечивающее перенос питательных веществ, продуктов метаболизма, ферментов, гормонов и др. Поэтому течение жидких сред является одним

Особенности движения жидкостей описываются физическими (гидродинамическими) закономерностями. Использование этих закономерностей для изучения кровообращения привело к созданию и быстрому развитию биофизического направления — гемодинамики, описывающей течение крови в сосудистой системе не только в нормальных условиях, но и при развитии патологических процессов. Теоретическим фундаментом гемодинамики служит гидродинамика, и поэтому необходимо ознакомиться с ее основными понятиями и теоретическими положениями.

Классификация жидких сред



Все жидкости подразделяются на идеальные и реальные. Под идеальной понимают такую, которая не имеет вязкости и не изменяет свой объем при воздействии внешнего давления. При движении такой жидкости отсутствуют потери механической энергии на преодоление сил сопротивления. Реальные жидкости способны изменять свой объем и при их течении происходит потеря энергии. Однако в некоторых случаях можно с определенной степенью точности реальные жидкости описывать законами, справедливыми для идеальных. Так например, при тех давлениях, которые действуют в организме, изменением их объема можно пренебречь. Если рассматривать движение жидкости, обладающей значительной механической энергией, на сравнительно небольшом пути, энергетические потери также можно не учитывать. Однако в большинстве случаев при рассмотрении течения крови приходится пользоваться законами, справедливыми для реальных жидкостей.



Реальные жидкости подразделяются на ньютоновские и неньютоновские. В ньютоновских коэффициент вязкости не зависит от скорости сдвига (от условий течения). Если рассмотреть график зависимости напряжения sС от скорости сдвига e’, то для ньютоновской жидкости он представляет прямую, проходящую через начало координат (см. рис. 65). Тангенс угла наклона этой прямой к оси абсцисс:

tg Q = sC / e’ = he’ /e’ = h

представляет собой коэффициент вязкости. Поскольку в любой точке прямой этот угол не изменяется, величина коэффициента вязкости одинакова для каждой скорости сдвига. Иначе обстоит дело для неньютоновских жидкостей.

Рис. 65 Исследование зависимости напряжения от скорости сдвига для крови описывается нелинейной зависимостью, представленной на рисунке 66. Для нахождения коэффициента вязкости при различных скоростях необходимо определить тангенс угла наклона касательной в соответствующей точке графика.

Как следует из рисунка, с увеличением скорости сдвига угол наклона касательной и следовательно коэффициент вязкости уменьшается. Именно поэтому кровь является неньютоновской жидкостью. Рис. 66.

Жидкость — Википедия

Жи́дкость — вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями[1].

При этом агрегатное состояние жидкости как и агрегатное состояние твёрдого тела является конденсированным, т. е. таким, в котором частицы (атомы, молекулы, ионы) связаны между собой.
Основным свойством жидкости, отличающим её от веществ, находящихся в других агрегатных состояниях, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[2].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём. Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Волны на поверхности воды

Если сместить участок поверхности жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ею можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P{\displaystyle P} и температурой T{\displaystyle T}. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T){\displaystyle E_{kin}(P,T)} и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T){\displaystyle E_{int}(P,T)}. Для жидкостей эти энергии приблизительно равны: Eint≈Ekin;{\displaystyle E_{int}\,\approx \,E_{kin};} для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий(натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

3. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

4. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

5. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из не простых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[3][4][5]. У неньютоновской жидкости вязкость зависит от градиента скорости.[6][7]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d{\displaystyle d}, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

PnkT=1+η+η2(1−η)3,{\displaystyle {\frac {P}{n\,k\,T}}={\frac {1+\eta +\eta ^{2}}{(1-\eta )^{3}}}\quad ,}
где n{\displaystyle n} — число частиц в единице объёма, η=(1/6)πnd3{\displaystyle \eta =(1/6)\,\pi \,n\,d^{3}} — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: P/nkT=1{\displaystyle P/n\,k\,T=1} . Для предельно больших плотностей, η→1{\displaystyle \eta \to 1}, получается уравнение состояния несжимаемой жидкости: V=const{\displaystyle V\,=\,const} .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Тепловые колебания атомов в решетке кристалла: точки — атомы, соединяющие линейные отрезки — межатомные связи
Поведение атомов жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)[8]

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия.
При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

По другому представлению[9][10] в основе кластерной теории жидкости, как о веществе, находящемся в конденсированном (связанном) состоянии (сохранение объёма), а не в состоянии «газоплотного» беспорядка, лежит представление о кластерах, как остаточных после перехода через точку плавления квазикристаллических динамических структурах с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, обеспечивающих сохранение объёма и определяющих подвижность (текучесть) и химическую активность жидкости. С ростом температуры количество атомов в кластерах уменьшается за счет увеличения разорванных связей. Образующиеся свободные атомы (молекулы) испаряются с поверхности жидкости или остаются в межкластерном пространстве в качестве растворённого газа (пара). При температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное (парообразное) состояние.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Примечания

  1. Жидкость — статья из Физической энциклопедии
  2. ↑ В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  3. ↑ «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  4. ↑ Физическая энциклопедия: Ньютоновская жидкость
  5. Ньютоновская жидкость — статья из Физической энциклопедии
  6. ↑ Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  7. ↑ Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978
  8. Андреев В. Д. Избранные проблемы теоретической физики.. — Киев: Аванпост-Прим,. — 2012.
  9. Андреев В. Д. Крэш (crash)-конформационная кинематика ковалентной решетки алмаза при плавлении. // Журнал структурной химии. — 2001. — № 3. — С. 486-495.
  10. Андреев В. Д. «Фактор плавления» при межатомных взаимодействиях в алмазной решетке. // Химическая физика. — 2002. — № 8,т.21. — С. 35-40.

Ссылки

Свойства жидкостей. Основные физические свойства жидкости

Известно, что все, что окружает человека, включая и его самого, — это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они — из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма — сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде — водород, азот, кислород и другие.
  3. Жидкие металлы — ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры — типа жидких кристаллов, неньютоновских жидкостей, которые обладают особыми свойствами.

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: «Назовите свойства жидкостей» человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, — это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода — очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: «Назовите свойства жидкостей» сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой — воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к «хождению» по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них — текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

  • перегрев;
  • охлаждение;
  • кипение.

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с критическими температурами (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.

  1. Жидкость — газ. Такие системы являются наиболее широко распространенными, поскольку существуют в природе повсеместно. Ведь испарение воды — часть естественного круговорота. При этом образующийся пар существует одновременно с жидкой водой. Если же говорить о замкнутой системе, то и там происходит испарение. Просто пар становится насыщенным очень быстро и вся система в целом приходит к равновесию: жидкость — насыщенный пар.
  2. Жидкость — твердые вещества. Особенно на таких системах заметно еще одно свойство — смачиваемость. При взаимодействии воды и твердого вещества последнее может смачиваться полностью, частично или вообще отталкивать воду. Существуют соединения, которые растворяются в воде быстро и практически неограниченно. Есть и те, что вообще к этому не способны (некоторые металлы, алмаз и прочие).

В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Главное отличие — это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение — это процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация — процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе — испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно — ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества — одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел — это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • «лизун», которым играют дети;
  • «хенд гам», или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. Неньютоновские жидкости — достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Жидкость — Википедия. Что такое Жидкость

Жи́дкость — вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями[1].

При этом агрегатное состояние жидкости как и агрегатное состояние твёрдого тела является конденсированным, т. е. таким, в котором частицы (атомы, молекулы, ионы) связаны между собой.
Основным свойством жидкости, отличающим её от веществ, находящихся в других агрегатных состояниях, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[2].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём. Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Волны на поверхности воды

Если сместить участок поверхности жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ею можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P{\displaystyle P} и температурой T{\displaystyle T}. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T){\displaystyle E_{kin}(P,T)} и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T){\displaystyle E_{int}(P,T)}. Для жидкостей эти энергии приблизительно равны: Eint≈Ekin;{\displaystyle E_{int}\,\approx \,E_{kin};} для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий(натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

3. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

4. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

5. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из не простых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[3][4][5]. У неньютоновской жидкости вязкость зависит от градиента скорости.[6][7]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d{\displaystyle d}, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

PnkT=1+η+η2(1−η)3,{\displaystyle {\frac {P}{n\,k\,T}}={\frac {1+\eta +\eta ^{2}}{(1-\eta )^{3}}}\quad ,}
где n{\displaystyle n} — число частиц в единице объёма, η=(1/6)πnd3{\displaystyle \eta =(1/6)\,\pi \,n\,d^{3}} — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: P/nkT=1{\displaystyle P/n\,k\,T=1} . Для предельно больших плотностей, η→1{\displaystyle \eta \to 1}, получается уравнение состояния несжимаемой жидкости: V=const{\displaystyle V\,=\,const} .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Тепловые колебания атомов в решетке кристалла: точки — атомы, соединяющие линейные отрезки — межатомные связи
Поведение атомов жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)[8]

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия.
При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

По другому представлению[9][10] в основе кластерной теории жидкости, как о веществе, находящемся в конденсированном (связанном) состоянии (сохранение объёма), а не в состоянии «газоплотного» беспорядка, лежит представление о кластерах, как остаточных после перехода через точку плавления квазикристаллических динамических структурах с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, обеспечивающих сохранение объёма и определяющих подвижность (текучесть) и химическую активность жидкости. С ростом температуры количество атомов в кластерах уменьшается за счет увеличения разорванных связей. Образующиеся свободные атомы (молекулы) испаряются с поверхности жидкости или остаются в межкластерном пространстве в качестве растворённого газа (пара). При температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное (парообразное) состояние.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Примечания

  1. Жидкость — статья из Физической энциклопедии
  2. ↑ В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  3. ↑ «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  4. ↑ Физическая энциклопедия: Ньютоновская жидкость
  5. Ньютоновская жидкость — статья из Физической энциклопедии
  6. ↑ Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  7. ↑ Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978
  8. Андреев В. Д. Избранные проблемы теоретической физики.. — Киев: Аванпост-Прим,. — 2012.
  9. Андреев В. Д. Крэш (crash)-конформационная кинематика ковалентной решетки алмаза при плавлении. // Журнал структурной химии. — 2001. — № 3. — С. 486-495.
  10. Андреев В. Д. «Фактор плавления» при межатомных взаимодействиях в алмазной решетке. // Химическая физика. — 2002. — № 8,т.21. — С. 35-40.

Ссылки

Основные свойства жидкостей :: SYL.ru

Жидкостью называют вещество, которое находится в агрегатном состоянии, являющимся промежуточным между твердым и газообразным. При этом ее состояние, как и в случае с твердыми телами, является конденсируемым, то есть предполагает связь между частицами (атомами, молекулами, ионами). Жидкость обладает свойствами, кардинально отличающими ее от веществ, которые находятся в других агрегатных состояниях. Главное из них – способность к многократному изменению формы под воздействием механических напряжений без потери объема. Сегодня мы с вами выясним, какими свойствами обладают жидкости, и что они вообще собой представляют.

Общая характеристика

Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость – только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой – не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.

Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше – в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.

Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.

Рассмотрим основные свойства жидкостей.

Текучесть

От других веществ жидкость отличается, в первую очередь, текучестью. Если к ней приложить внешнюю силу, в направлении ее приложения возникает поток частиц. Таким образом, при воздействии внешних неуравновешенных сил, жидкость не способна к сохранению формы и относительного расположения частиц. По этой же причине, она принимает форму сосуда, в который попадает. В отличие от твердых пластичных тел, жидкости не имеют предела текучести, то есть текут при малейшем выходе из равновесного состояния.

Сохранение объема

Одним из характерных физических свойств жидкостей является способность к сохранению объема при механическом воздействии. Их чрезвычайно трудно сжать из-за высокой плотности молекул. Согласно закону Паскаля, давление, которое производится на жидкость, заключенную в сосуд, без изменения передается в каждую точку ее объема. Наряду с минимальной сжимаемостью, эта особенность широко используется в гидравлике. Большинство жидкостей при нагревании увеличивается в объеме, а при охлаждении – уменьшается.

Вязкость

Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.

Свободная поверхность и поверхностное натяжение

Если взглянуть на каплю воды, которая лежит на ровной поверхности, то можно увидеть, что она закруглена. Обусловлено это такими свойствами жидкостей, как образование свободной поверхности и поверхностное натяжение. Способность жидкостей к сохранению объема обуславливает образование свободной поверхности, которая является не иначе как поверхностью раздела фаз: жидкой и газообразной. При соприкосновении этих фаз одного и того же вещества возникают силы, направленные на уменьшение площади плоскости раздела. Их называют поверхностным натяжением. Граница раздела фаз представляет собой упругую мембрану, стремящуюся к стягиванию.

Поверхностное натяжение объясняется также притяжением молекул жидкости друг к другу. Каждая молекула стремится «окружить» себя другими молекулами и уйти с границы раздела. Из-за этого поверхность стремительно уменьшается. Этим объясняется тот факт, что мыльные пузыри и пузыри, образующиеся при кипении, стремятся принять сферическую форму. Если на жидкость будет действовать только сила поверхностного натяжения, она непременно примет такую форму.

Небольшие объекты, плотность которых превышает плотность жидкости, способны оставаться на ее поверхности за счет того, что сила, препятствующая увеличению площади поверхности, больше силы тяготения.

Испарение и конденсация

Испарением называют постепенный переход вещества из жидкого состояния в газообразное. В процессе теплового движения часть молекул покидают жидкость, проходя через ее поверхность, и преобразуются в пар. Параллельно с этим другая часть молекул, наоборот, переходит из пара в жидкость. Когда количество соединений, покинувшее жидкость, превышает количество соединений, пришедших в нее, имеет место процесс испарения.

Конденсацией называют процесс, обратный испарению. Во время конденсации жидкость получает из пара больше молекул, чем отдает.

Оба описанных процесса являются неравновесными и могут продолжаться до тех пор, пока не установится локальное равновесие. При этом жидкость может полностью испариться или же вступить со своим паром в равновесие.

Кипение

Кипением называют процесс внутренних преобразований жидкости. При повышении температуры до определенного показателя, давление пара превышает давление внутри вещества, и в нем начинают образовываться пузырьки. В условиях земного притяжения они всплывают вверх.

Смачивание

Смачиванием называют явление, которое возникает при контакте жидкости с твердым веществом в присутствии пара. Таким образом, оно происходит на границе раздела трех фаз. Это явление характеризует «прилипание» жидкого вещества к твердому, и его растекание по поверхности твердого вещества. Бывает три вида смачивания: ограниченное, полное и несмачивание.

Смешиваемость

Характеризует способность жидкостей растворяться друг в друге. Примером смешиваемых жидкостей могут выступить вода и спирт, а несмешиваемых – вода и масло.

Диффузия

Когда две смешиваемых жидкости пребывают в одном сосуде, благодаря тепловому движению молекулы начинают преодолевать границу раздела, и жидкости постепенно смешиваются. Данный процесс называется диффузией. Он может происходить и в веществах, которые находятся в иных агрегатных состояниях.

Перегрев и переохлаждение

Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.

Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.

Волны на поверхности

Если нарушить равновесие участка поверхности жидкости, то тогда она, под действием возвращающих сил, будет двигаться обратно к равновесию. Это движение не ограничивается одним циклом, а превращается в колебания и распространяется на другие участки. Так получаются волны, которые можно наблюдать на поверхности любой жидкости.

Когда в качестве возвращающей силы выступает преимущественно сила тяжести, волны называют гравитационными. Их можно видеть на воде повсеместно. Если же возвращающая сила формируется преимущественно из силы поверхностного натяжения, то волны называют капиллярными. Теперь вы знаете, какое свойство жидкостей обуславливает знакомое всем волнение воды.

Волны плотности

Жидкость чрезвычайно тяжело сжимается, тем не менее, с изменением температуры, ее объем и плотность все-таки меняются. Происходит это не мгновенно: при сжатии одного участка, другие сжимаются с запаздыванием. Таким образом, внутри жидкости распространяются упругие волны, которые получили название волны плотности. Если по мере распространения волны плотность меняется слабо, то ее называю звуковой, а если достаточно сильно – ударной.

Мы с вами познакомились с общими свойствами жидкостей. Все основные характеристики зависят уже от типа и состава жидкостей.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Изучение

Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.

Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.

Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором – их движение.

Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.

Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.

Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика – подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.

В заключение

Сегодня мы с вами познакомились с общими физическими свойствами жидкостей. Также мы узнали, что вообще представляют собой такие вещества, и как они классифицируются. Что касается химических свойств жидкости, то они напрямую зависят от ее состава. Поэтому рассматривать их стоит отдельно для каждого вещества. Какое свойство жидкости важно, а какое нет — ответить сложно. Здесь все зависит от задачи, в контексте которой эта жидкость рассматривается.

Классификация жидкостей — Большая химическая энциклопедия

Продвижение прозрачного раствора из так называемого кристаллизатора с двойным отводом — это просто удаление маточного раствора без одновременного удаления кристаллов. Первичное действие при удалении классифицированной мелочи — это предпочтительный отвод из кристаллизатора кристаллов с размером ниже некоторого заданного значения, это может быть связано с растворением кристаллов, удаленных в виде мелочи, и возвратом полученного раствора в кристаллизатор.Удаление классифицированного продукта проводят для удаления преимущественно кристаллов, размер которых превышает определенное значение. В последующем обсуждении влияние каждой из этих функций селективного удаления на распределение кристаллов по размерам будет описано в терминах функции плотности заселенности n. Будут рассмотрены только идеальные устройства для классификации твердых и жидких веществ. При анализе удобно определять скорость потока прозрачного щелока. Таким образом, функция плотности населения обязательно определяется на основе прозрачного раствора.[Pg.217]

Ясно, однако, что as не является количественно равным a, потому что макроструктурная рыхлость (A) полимера в двух случаях не одинакова A для (Sty), x (DVB) x равно задается формулой [(1 / x) 1 3 — (l / x) o 3], как определено в уравнении. 20, тогда как A для несшитого полимера изменяется в зависимости от класса жидкости, которая определяет y и распределение самоассоциированных доменов, которые включают y, как указано выше. Однако возможно установить количественную взаимосвязь a с oc9 для данного класса жидкостей, которая затем может быть использована, в свою очередь, для определения соответствующих a / ocs для других систем P-L в этой классификации жидкостей.[Pg.86]

Поскольку на рис. 2.6 показаны различные соединения и разъединения, которые могут встречаться в среде с ионной жидкостью, мы использовали его в качестве основы для классификации ионных жидкостей. Мы делим ионные жидкости на идеальные, субионные (или бедные ионные) жидкости и суперионные жидкости. Субионные жидкости могут быть хорошими проводниками при атмосферном давлении, поскольку их текучесть высока, но проводимость намного ниже, чем если бы все движущиеся частицы были катионами или анионами. [Стр.15]

Таблица 1 Схема классификации воспламеняющихся жидкостей (адаптирована из ASTM E1618)…

Z ПОДХОД МОДЕЛИ СМЕСИ К КЛАССИФИКАЦИЯМ ЖИДКОСТЕЙ НА ОСНОВЕ ЛОКАЛЬНЫХ СВОЙСТВ МОЛЕКУЛ … [Стр.208]

Временная шкала — это всего лишь одна подклассификация химического обмена. Его можно далее разделить на связанные и несвязанные системы, взаимный или невзаимный обмен, меж- или внутримолекулярные процессы и твердые тела по сравнению с жидкостями. Однако все это можно рассматривать последовательно и четко.[Pg.2092]

Рисунок C2.2.7. Схема, иллюстрирующая классификацию шин и номенклатуру дискотических жидкокристаллических фаз. Для столбчатых фаз шины индексы обычно используются в комбинации с каждым другим. Например, обозначает прямоугольную решетку из столбцов, в которой молекулы шины уложены неупорядоченным образом (по [33]) …
Схемы классификации поверхностно-активных веществ основаны на физических свойствах или функциональности.Заряд — это наиболее распространенное физическое свойство шин, используемое при классификации поверхностно-активных веществ. Поверхностно-активные вещества бывают заряженными или незаряженными, ионными или неионогенными. Заряженные поверхностно-активные вещества далее классифицируются в зависимости от того, какая амфипатлическая часть шины является анионной, катионной или цвиттерионной. Другая схема физической классификации основана на общем размере и молекулярной массе. Сополимерные неионные поверхностно-активные вещества могут достигать размеров, соответствующих 10 000-20 000 Дальтон. Физическое состояние является еще одним важным физическим свойством, так как поверхностно-активные вещества могут быть получены в виде кристаллических твердых веществ, паст или жидкостей в стандартных условиях.Количество хвостовых групп в поверхностно-активном веществе в последнее время стало важным параметром. Многие поверхностно-активные вещества имеют одну или две хвостовые группы углеводородов, а недавние достижения в науке о поверхностно-активных веществах включают даже более сложные сборки [7, 8 и 9].

Акролеин представляет собой легковоспламеняющуюся жидкость DOT, имеющую дополнительную классификацию опасности DOT: яд B и коррозионный материал. Это также опасность при вдыхании, которая подпадает под специальные требования к упаковке 49 CER 173.3а. [Стр.129]

ДМФ можно приобрести, в том числе, в стальных ДММ (DOT 17E, UNIAL, 410 фунтов нетто = 186 кг), цистернах и железнодорожных вагонах. 1 октября 1993 г. в США были введены новые правила в отношении ДМФ под HM-181, официальное отгрузочное наименование — / V, / V- дим этил формами де (отгрузочное обозначение UN 2265, группа упаковки III, легковоспламеняющаяся жидкость. ). Раньше он классифицировался как горючая жидкость в больших количествах, но как «не регулируемый» в dmms (49 CFR). Международные отправления за границу имеют классификацию IMCO 3.3. [Pg.513]

Транспортировка и хранение. Жидкая двуокись серы обычно отправляется в Северную Америку в 55- и 90-тонных цистернах, 20-тонных цистернах, 1-тонных баллонах и 150-фунтовых баллонах. Баллоны, изготовленные из указанной стали, имеют зеленую этикетку для негорючих газов. Классификация DOT — ядовитый газ, вдыхание Ha2ard. Покупатели количества цистерн должны иметь соответствующие складские помещения для быстрой перевозки. [Стр.147]

Отгрузка и хранение. MSA поставляется в емкостях-цистернах и в пластиковых контейнерах емкостью 55 мм или меньше с полиэтиленовыми вставками.Классификация грузовых перевозок: Алкилсульфоновая кислота, жидкий коррозионный материал 8, № ООН 2586, химический NOIBN. [Pg.154]

Этиловый спирт является легковоспламеняющимся жидким химическим веществом, требующим красной маркировки DOT и Береговой охраной. Его температура вспышки составляет 14 ° C (бирка, закрытый стакан). Концентрация паров в воздухе от 3,3 до 19,0% по объему является взрывоопасной. Жидкий этиловый спирт может активно реагировать с окислителями. Этиловый спирт нашел широкое применение в промышленности, и опыт показывает, что он не является серьезным промышленным ядом (273–275).Если поддерживается надлежащая вентиляция рабочей среды, существует небольшая вероятность того, что вдыхание паров будет опасным. [Pg.413]

Для полностью разработанного несжимаемого прямоточного восходящего потока газов и жидкостей в вертикальных трубопроводах в литературе появилось множество терминологий и описаний схемы потока, некоторые из которых были обобщены и сопоставлены Говье, Рэдфордом и Данн Каном. . J. Chem. Eng., 35, 58-70 [1957]). Одна разумная классификация паттернов проиллюстрирована на рис.6-28. [Pg.654]

Распылительные сушилки Распылительная сушилка состоит из большой цилиндрической и обычно вертикальной камеры, в которую материал, подлежащий сушке, распыляется в виде мелких капель и в которую подается большой объем горячего газа, достаточный для подачи тепло, необходимое для полного испарения жидкости. Теплообмен и массообмен осуществляется за счет прямого контакта горячего газа с диспергированными каплями. После завершения процесса изготовления охлажденный газ и твердые частицы отделяются. Это может быть выполнено частично на дне камеры для смешивания путем классификации и отделения крупных высушенных частиц.Мелкие частицы отделяются от газа во внешних циклонах или мешочных коллекторах. Когда для конечного продукта желательна только фракция крупных частиц, мелкие частицы могут быть извлечены в мокрых скрубберах, скрубберная жидкость концентрируется и возвращается в качестве сырья в фабрику по производству скруббера. Горизонтальные распылительные камеры изготавливаются с продольным шнековым конвейером в нижней части камеры для непрерывного удаления осевших крупных частиц. [Pg.1229]

Различные типы фильтрующих материалов и материалы, из которых они изготовлены, подробно рассматриваются в журнале «Закупки промышленной фильтрации жидкостей», CRC Press, Кливленд, 1967, гл.3), а характеризующие измерения (например, размер пор, проницаемость) подробно рассмотрены Раштоном и Гриффитсом (в Orr, op. Cit., Chap. 3). Более краткое изложение классификации материалов и практических критериев выбора фильтрующего материала представлено Shoemaker (указ. Цит., Стр. 26) и Purchas [Filtr Sep., 17, 253, 372 (1980)]. [Pg.1708]

NFPA 497 Классификация легковоспламеняющихся жидкостей, газов или паров и опасных (классифицированных) мест для электрических установок в зонах химических процессов, издание 1997 года.Национальная ассоциация противопожарной защиты, Куинси, Массачусетс. [Pg.155]

Классификация газов, химических паров и летучих жидкостей … [Pg.179]


.

Горючие жидкости, классификация — Большая химическая энциклопедия

ДМФ можно приобрести в виде стальных ДММ (DOT 17E, UNIAL, 410 фунтов нетто = 186 кг), цистерн и железнодорожных вагонов. 1 октября 1993 г. в США были введены новые правила в отношении ДМФ под HM-181, официальное отгрузочное наименование — / V, / V- дим этил формами де (отгрузочное обозначение UN 2265, группа упаковки III, легковоспламеняющаяся жидкость. ). Раньше он классифицировался как горючая жидкость в больших количествах, но как «не регулируемый» в dmms (49 CFR).Международные отправления за границу имеют классификацию IMCO 3.3. [Pg.513]

Основная классификация легковоспламеняющихся и горючих жидкостей. Пожароопасные свойства легковоспламеняющихся жидкостей, газов и летучих твердых веществ … [Pg.551]

FPN No. 4) Для получения дополнительной информации о вентиляции см. Горючие и горючие вещества Кодекс по жидкостям, NFPA 30-1993 и Рекомендуемая практика для классификации местоположений электрических установок на нефтяных объектах, API RP 500-1991, раздел 4.6. [Pg.638]

FPN) Классификация зон, перечисленная в Таблице 515-2, основана на предположении, что установка полностью соответствует применимым требованиям Кодекса по легковоспламеняющимся и горючим жидкостям, NFPA 30-1993 (ANSI), Глава 5, уважает.Если это не так, компетентный орган имеет право классифицировать размер классифицированного пространства. [Pg.644]

NFPA-325 Руководство по пожароопасным свойствам легковоспламеняющихся жидкостей, газов и летучих твердых веществ (изд. 1994 г.), Базовая классификация легковоспламеняющихся и горючих жидкостей NFPA-321 (изд. 1991 г.), NFPA-497A, Классификация опасных (классифицированных) мест класса 1 для электрических установок в зонах химических процессов (издание 1992 г.) и NFPA-497B, Классификация опасных (классифицированных) мест класса II для электрических установок в зонах химических процессов (изд.), Национальная ассоциация противопожарной защиты, Куинси, Массачусетс. [Pg.688]

В общем смысле любой материал, чем можно гореть. Это означает более низкую степень воспламеняемости, хотя нет четкого различия между легковоспламеняющимися и горючими материалами (NFPA 30, Кодекс по горючим и легковоспламеняющимся жидкостям, определяет различия между классификацией горючих жидкостей и легковоспламеняющихся жидкостей на основе температуры вспышки. и давление пара). [Стр.33]

Для легковоспламеняющихся и горючих жидкостей точка вспышки является основным основанием для классификации степени пожарной опасности.Классификации NFPA 1, 2 и 3 обозначают жидкости с наибольшей или наименьшей пожарной опасностью соответственно. По сути, жидкости с низкой температурой вспышки представляют собой жидкости с высокой пожароопасностью. [Pg.310]

Некоторые соединения брома подпадают под действие Правил по опасным материалам. Другие соединения обычно могут транспортироваться в соответствии с классификацией химических веществ, не индексируемых по названию, без особых требований, если только по своей природе они не подпадают под такую ​​категорию, как горючая жидкость, сжатый газ, коррозионная жидкость (или твердое вещество), дезинфицирующая жидкость (или твердое вещество), dmg, промежуточный краситель (жидкость), огнетушитель, горючий газ (жидкий или твердый), инсектицид, лекарство, окислитель или окислитель, ядовитая жидкость (газ или твердое вещество), растворитель или слезоточивый газ.К каждой из этих категорий применяются особые положения, и требуется соответствующая упаковка и маркировка. [Стр.302]

Классификация жидких веществ, способных гореть, на основе температуры вспышки. Горючая жидкость означает любую жидкость, имеющую температуру вспышки не ниже 37,8 ° C (100 ° F), но ниже 93,3 ° C (200 ° F), за исключением любой смеси, содержащей компоненты с температурой вспышки 93,3 ° C (200 ° F) или выше, общая сумма которых составляет 99 и более процентов от общего объема смеси. [Стр.11]

КЛАССИФИКАЦИЯ ТОЧЕК 8 Этикетка Коррозионный ПРОФИЛЬ БЕЗОПАСНОСТИ Умеренно токсичен при проглатывании, контакте с кожей, подкожном, внутрибрюшинном и внутривенном путях.Приведены данные о мутации человека. Сильное раздражение кожи и глаз. Коррозийный материал. Горючая жидкость. Может реагировать с окислителями. Реакция накала с триоксидом хрома выше 100 °. Для тушения пожара используйте спиртовую пену, СО2, сухой химикат. При нагревании до разложения выделяет едкий дым и раздражающие пары. [Pg.248]

Трехвидео по промышленным газам, легковоспламеняющимся и горючим жидкостям и опасным химическим веществам. Выявление опасных материалов, хранение и обращение с ними, классификация материалов, транспортировка, маркировка, передача, предотвращение пожаров и меры по обеспечению безопасности.[Стр.161]

Легковоспламеняющиеся и горючие жидкости могут быть отнесены к классам IA, IB, IC, II, IIIA или IIIB по системе классификации NFPA 30, Кодекса горючих и горючих жидкостей. Жидкости класса IA ​​считаются наиболее опасными, а класс IIIB — наименее опасными. Эта система классификации основана на температуре вспышки в закрытом тигле, а для жидкостей классов IA и IB — также на температуре кипения жидкости. Жидкости считаются легковоспламеняющимися, если их температура воспламенения ниже 100 ° F (37.8 ° C) и горючие, если их температура вспышки равна или выше 100 ° F (37,8 ° C). [Стр.15]

Необходимо провести дальнейшие исследования, чтобы найти лучшие средства для классификации истинной пожарной опасности всех легковоспламеняющихся и горючих жидкостей. Температура вспышки и, в некоторых случаях, точка кипения — это измеренные значения, которые используются в текущей системе классификации. Дополнительные свойства, такие как вязкость, растворенные горючие твердые вещества, теплота сгорания или скорость тепловыделения, должны быть включены в более полную систему.[Стр.152]

Для целей регламента горючая жидкость определяется как любая жидкость, которая не соответствует определению какой-либо другой классификации, указанной в регламенте, и имеет температуру вспышки не ниже 100 ° F (37,8 ° C. ) и ниже 200 ° F (93,3 ° C), за исключением любой смеси, содержащей один или несколько компонентов, с температурой вспышки 200 ° F (93,3 ° C) или выше, что составляет не менее 99 процентов от общего объема смеси. [Стр.93]

NFPA использует систему классификации легковоспламеняющихся и горючих жидкостей в стационарных хранилищах (см. Рисунок 5.1). Эта система является частью согласованного стандарта NFPA 30, Кодекса по легковоспламеняющимся и горючим жидкостям. Система NFPA дополнительно разделяет категории легковоспламеняющихся и горючих жидкостей на подразделения, основанные на температурах воспламенения и температур кипения жидкостей. Система классификации NFPA не применяется к транспортировке опасных материалов, поскольку правила DOT заменяют NFPA 30. Примеры жидкостей в различных классификационных категориях приведены на Рисунке 5.2. [Стр.165]

NFPA 45,2.2.1.1-4 4.3.2 Классификация пожарной опасности — Лабораторные блоки должны быть классифицированы по классу A (высокая пожарная опасность), классу B (умеренная пожарная опасность), классу C (низкая пожарная опасность) или классу D (минимальная пожарная опасность). в соответствии с количеством легковоспламеняющихся и горючих жидкостей, присутствующих в лаборатории (за пределами зоны хранения), как указано в Таблице 2.2.1 (a) и Таблице 2.2.1 (b) в NFPA 45. [Стр.209]

Многие лаборатории имеют классификацию B (бизнес) с спринклерными системами и имеют ограничения по хранению легковоспламеняющихся и горючих жидкостей, как показано в таблице 4.2. [Стр.79]

ТАБЛИЦА 4.2 Пределы хранения легковоспламеняющихся и горючих жидкостей для лабораторий Классификация B с спринклерной системой … [Стр.79]

ТАБЛИЦА 5.1.2.1 Свойства легковоспламеняющихся и горючих жидкостей, определенные во всем мире Гармонизированная система классификации и маркировки химических веществ … [Pg.231]

NFPA разработало систему классификации легковоспламеняющихся и горючих жидкостей (см. Таблицу 16-3), которая использует температуру вспышки, давление пара и ожидаемые условия температуры окружающей среды.Легковоспламеняющаяся жидкость — это жидкость с температурой вспышки, которая не превышает 100 ° F на основании испытаний с использованием методов испытаний в закрытом тигле. Горючая жидкость — это жидкость с температурой вспышки 100 ° F или выше при использовании тех же методов испытаний. Точка воспламенения жидкости — это самая низкая температура, при которой давления пара жидкости достаточно для получения … [Pg.224]

ТАБЛИЦА 16-3 Классификация горючих и горючих жидкостей NFPA … [Pg.224] .224]


.

Классификация легковоспламеняющихся и горючих жидкостей

Основная классификация легковоспламеняющихся и горючих жидкостей Пожароопасные свойства легковоспламеняющихся жидкостей, газов и летучих твердых веществ … [Pg.551]

NFPA-325 Руководство по пожароопасным свойствам воспламеняющихся жидкостей, газов и Летучие твердые вещества, (издание 1994 г.), Базовая классификация легковоспламеняющихся и горючих жидкостей NFPA-321 (изд. 1991 г.), NFPA-497A, Классификация опасных (классифицированных) мест класса 1 для электрических установок в зонах химических процессов (изд.) и NFPA-497B, Классификация опасных (классифицированных) мест класса II для электрических установок в зонах химических процессов (издание 1991 г.), Национальная ассоциация противопожарной защиты, Куинси, Массачусетс. [Pg.688]

Стандарт NFPA 321 по базовой классификации легковоспламеняющихся и горючих жидкостей. [Стр.28]

NFPA 321 — Базовая классификация легковоспламеняющихся и горючих жидкостей. [Стр. 359]

NFPA 45,2.2.1.1-4 4.3.2 Классификация пожарной опасности — Лабораторные блоки должны быть классифицированы как класс A (высокая пожарная опасность), класс B (умеренная пожарная опасность), класс C (низкая пожароопасность) , или класс D (минимальная опасность возгорания), в зависимости от количества легковоспламеняющихся и горючих жидкостей, присутствующих в лаборатории (за пределами зоны хранения), как указано в таблице 2.2.1 (a) и Таблица 2.2.1 (b) в NFPA 45. [Pg.209]

ТАБЛИЦА 5.1.2.1 Свойства легковоспламеняющихся и горючих жидкостей, определенные Согласованной на глобальном уровне системой классификации и маркировки химических веществ … [ Pg.231]

Для легковоспламеняющихся и горючих жидкостей точка вспышки является основным основанием для классификации степени пожарной опасности. Классификации NFPA 1, 2 и 3 обозначают жидкости с наибольшей или наименьшей пожарной опасностью соответственно. По сути, жидкости с низкой температурой вспышки представляют собой жидкости с высокой пожароопасностью.[Pg.310]

Легковоспламеняющиеся и горючие жидкости могут быть отнесены к классам IA, IB, IC, II, IIIA или IIIB по системе классификации NFPA 30, Кодекса горючих и горючих жидкостей. Жидкости класса IA ​​считаются наиболее опасными, а класс IIIB — наименее опасными. Эта система классификации основана на температуре вспышки в закрытом тигле, а для жидкостей классов IA и IB — также на температуре кипения жидкости. Жидкости считаются легковоспламеняющимися, если их температура воспламенения ниже 100 ° F (37.8 ° C) и горючие, если их температура вспышки равна или выше 100 ° F (37,8 ° C). [Стр.15]

Необходимо провести дальнейшие исследования, чтобы найти лучшие средства для классификации истинной пожарной опасности всех легковоспламеняющихся и горючих жидкостей. Температура вспышки и, в некоторых случаях, точка кипения — это измеренные значения, которые используются в текущей системе классификации. Дополнительные свойства, такие как вязкость, растворенные горючие твердые вещества, теплота сгорания или скорость тепловыделения, должны быть включены в более полную систему.[Стр.152]

NFPA использует систему классификации легковоспламеняющихся и горючих жидкостей в стационарных хранилищах (см. Рисунок 5.1). Эта система является частью согласованного стандарта NFPA 30, Кодекса по легковоспламеняющимся и горючим жидкостям. Система NFPA дополнительно разделяет категории легковоспламеняющихся и горючих жидкостей на подразделения, основанные на температурах воспламенения и температур кипения жидкостей. Система классификации NFPA не применяется к транспортировке опасных материалов, поскольку правила DOT заменяют NFPA 30.Примеры жидкостей, относящихся к различным классификационным категориям, приведены на Рисунке 5.2. [Pg.165]

В общем смысле, любой материал, способный гореть, обычно на воздухе при нормальных условиях окружающей температуры и давления, если не указано иное. Это означает более низкую степень воспламеняемости. Хотя нет общего отраслевого различия между легковоспламеняющимися и горючими материалами (NFPA 30, Кодекс по легковоспламеняющимся и горючим жидкостям, определяет разницу между классификацией горючих жидкостей и легковоспламеняющихся жидкостей на основе температуры вспышки… [Стр.66]

NFPA разработало систему классификации легковоспламеняющихся и горючих жидкостей (см. Таблицу 16-3), которая использует температуру вспышки, давление пара и ожидаемые условия температуры окружающей среды. Легковоспламеняющаяся жидкость — это жидкость с температурой вспышки, которая не превышает 100 ° F на основании испытаний с использованием методов испытаний в закрытом тигле. Горючая жидкость — это жидкость с температурой вспышки 100 ° F или выше при использовании тех же методов испытаний. Точка воспламенения жидкости — это самая низкая температура, при которой давление пара жидкости достаточно, чтобы произвести a… [Стр.224]

ДМФ можно приобрести, например, в стальных ДММ (DOT 17E, UNIAL, 410 фунтов нетто = 186 кг), цистернах и железнодорожных вагонах. 1 октября 1993 г. в США были введены новые правила в отношении ДМФ под HM-181, официальное отгрузочное наименование — / V, / V- дим этил формами де (отгрузочное обозначение UN 2265, группа упаковки III, легковоспламеняющаяся жидкость. ). Раньше он классифицировался как горючая жидкость в больших количествах, но как «не регулируемый» в dmms (49 CFR). Международные отправления за границу имеют классификацию IMCO 3.3. [Pg.513]

Субиндекс воспламеняемости описывает воспламеняемость жидкости, например в случае утечки. Воспламеняемость жидкостей измеряется по их температурам вспышки и кипения. Используемая классификация основана на директиве ЕС (Pyotsia, 1994). Вещества делятся на негорючие, горючие, легковоспламеняющиеся, легковоспламеняющиеся и легковоспламеняющиеся (таблица 11). [Стр.67]

Пожары классифицируются в зависимости от типа используемого топлива. Топливо обычно делится на три класса: обычные горючие вещества (например, древесина и бумага), легковоспламеняющиеся жидкости и горючие металлы.При тушении пожаров также рассматривается четвертый класс пожара — электрические пожары. Четыре основных классификации пожаров показаны в Таблице B-1. [Pg.395]

Некоторые соединения брома специально подпадают под действие Положений об опасных материалах. Другие соединения обычно могут транспортироваться в соответствии с классификацией химических веществ, не индексируемых по названию, без особых требований, если только по своей природе они не подпадают под такую ​​категорию, как горючая жидкость, сжатый газ, коррозионная жидкость (или твердое вещество), дезинфицирующая жидкость (или твердое вещество), dmg, промежуточный краситель (жидкость), огнетушитель, горючий газ (жидкий или твердый), инсектицид, лекарство, окислитель или окислитель, ядовитая жидкость (газ или твердое вещество), растворитель или слезоточивый газ.К каждой из этих категорий применяются особые положения, и требуется соответствующая упаковка и маркировка. [Стр.302]

Другие важные определения легковоспламеняющихся веществ можно найти в Правилах 1984 года по классификации, упаковке и маркировке опасных веществ, где под чрезвычайно легковоспламеняющейся жидкостью понимается жидкость с температурой вспышки менее 0 ° C и температурой кипения. температура воспламенения ниже или равна 35 ° C, легковоспламеняющаяся жидкость — жидкость с температурой вспышки менее 21 ° C, легковоспламеняющееся вещество — температура вспышки от 21 ° C до 55 ° C, которая при испытании в соответствии с с Приложением 2 Регламента HFL не поддерживает горение.[Pg.548]

В США классификация электрических зон для зон, содержащих легковоспламеняющиеся / горючие жидкости и газы, обычно определяется требованиями Национального электрического кодекса (NEC), то есть NFPA 70, API RP 500 и NFPA 30, которые похожи по содержанию. [Стр.232]


.

Классификация ионных жидкостей — Большая химическая энциклопедия

Поскольку на рис. 2.6 показаны различные соединения и разъединения, которые могут встречаться в средах с ионной жидкостью, мы использовали его в качестве основы для классификации ионных жидкостей. Мы делим ионные жидкости на идеальные, субионные (или бедные ионные) жидкости и суперионные жидкости. Субионные жидкости могут быть хорошими проводниками при атмосферном давлении, поскольку их текучесть высока, но проводимость намного ниже, чем если бы все движущиеся частицы были катионами или анионами.[Стр.15]

Oliveri et al. (2009) представили разработку искусственного языка на основе циклической вольтамперометрии на платиновых микродисковых электродах для классификации оливковых масел в соответствии с их географическим происхождением.Измерения производятся непосредственно в образцах масла, предварительно смешанных с надлежащим количеством RTIL (комната температура ионной жидкости). Применяемые методы распознавания образов: PCA для исследования данных и fc-NN для классификации, проверка результатов с помощью процедуры перекрестной проверки с пятью группами отмены.[Стр.107]

В этой статье растворители подразделяются на четыре основные категории, а именно. органические растворители, водные растворители, сверхкритические растворители и ионные жидкости. Эта классификация основана на эволюционном подходе к разработке растворителей. [Pg.2799]

В таблице 7.3 показана классификация жидких мембран на основе конфигурации и типов модулей, используемых при разделении газов. Жидкие мембраны можно разделить на три основных класса (i) поддерживаемые жидкие мембраны (SLM), (ii) объемные жидкие мембраны (BLM) и (iii) поддерживаемые ионно-жидкие мембраны (SILM).[Pg.332]

Где в этой классификации находятся ионные жидкости. За исключением неполярных групп, мы можем сказать, что при правильном выборе аниона и катиона ионные жидкости могут попасть в любую из этих категорий. Если мы рассмотрим большое количество возможных комбинаций анион-катион (см. Таблицу 1), выбор ИЖ далеко не очевиден, и перед разработкой промышленных процессов необходимо преодолеть ряд проблем (см. Раздел 5.1). При использовании ИЖ для катализа необходимо знать некоторые свойства.[Pg.418]

Полярность — это наиболее распространенная классификация растворителей. В первом приближении шкалы абсолютной полярности не существует, можно считать, что полярные растворители характеризуются своей способностью растворять заряженные растворенные вещества. Поскольку ионные жидкости сами по себе являются солями, ожидается, что они будут очень полярными. [Pg.21]

Учитывая, что ионные жидкости с аналогичными параметрами могут вести себя по-разному при использовании в качестве растворителей, была предложена другая классификация полярности, которая учитывает как основность водородной связи, так и диполярность.Анион сильно влияет на основность водородной связи ионной жидкости, тогда как вклад катиона незначителен. … [Pg.23]

Классификация приложений ионных жидкостей в гетерогенном катализе … [Pg.280]

Поскольку ионные жидкости представляют собой обширный класс различных веществ, нелегко предложить классификацию. Вот некоторые возможности … [Pg.1108]

История ионных жидкостей хорошо задокументирована, и широко известно, что благодаря работе Уолдена были получены первые зарегистрированные материалы, которые были намеренно ионными и расплавлялись при температуре окружающей среды [1] .Классификация ионных жидкостей как солей, которые являются жидкими при температуре ниже 100 ° C, произвольна и неудовлетворительна, потому что она не дает ответа на философский вопрос, когда ионная жидкость не является ионной жидкостью. жидкости вовлекают растворение молекулярных компонентов. Поэтому вопрос в том, сколько растворенного вещества можно добавить, прежде чем молекулярный характер преобладает над ионным. Многие авторы показали, что включение небольшого количества определенных примесей может иметь сильное влияние на физические и химические свойства ионной жидкости 12-4].[Стр.55]

Эта глава посвящена композитным мембранам PBI, включающим полимерную матрицу, в данном случае PBI, и другое соединение в форме наполнителя (твердые оксиды, твердые кислоты, гетерополикислоты и производные гетерополисоли, пирофосфаты, ионные жидкости и даже углеродистые материалы). Синергетический эффект между двумя элементами всегда оказывается решающим для улучшения характеристик мембраны. Как и в случае мембран Nation, причины для создания композитных мембран на основе PBl подпадают под следующую классификацию… [Pg.276]

РИСУНОК 1.2 Тройная диаграмма для классификации жидкостей (схематическое расположение точек является предположительным) [bmimjPF представляет собой ионную жидкость комнатной температуры (см. Раздел 8.3). По Тремильону (1974). [Pg.5]

Рис. 7.1 Классификация ионных жидкостей / расплавов солей в зависимости от температуры плавления …

Ионные жидкости на основе хлоралюминатов (наиболее распространенная форма кислотных или основных ионных жидкостей Льюиса) образуются в результате реакции хлоридной соли четвертичного аммония [QAm] »с хлоридом алюминия (AICI3) в различных соотношениях [94].Типичными примерами являются хлорид 1-этил-3-метилимидазоUum ([EMIm] Cl) и хлорид 1- (1-бутил) пиридиния ([BuPy] Cl) [95]. Основание Льюиса, нейтральные частицы или кислота образуются путем изменения соотношения двух компонентов ионной жидкости. Используя букву N для обозначения мольной доли AICI3 в расплаве [96], для этих ионных жидкостей дается следующая классификация … [Pg.219]

В водном растворе электродные потенциалы восстановления CO2 коррелируют с теплоты плавления (HoF) электродных металлов с низким содержанием HoF (Hg, Tl, Pb, In, Cd и Zn) дают формиат, в то время как металлы с высоким HoF (Pt, Pd, Ni, Au, Cu, Ag, Zn, Sn и Ga) образуют CO [77,87].Приведенная выше классификация далека от совершенства и не охватывает все возможные сценарии электровосстановления СО2. Как показано ниже, в разделе, посвященном исследованию органического карбоната, при использовании в ионной жидкости катоды из индия эффективны при получении диметилкарбоната. Кроме того, биметаллические электроды на основе меди могут проявлять улучшенную каталитическую активность в восстановлении CO2 до углеводородов. Примеры включают сплавы Cu-Ni, Cu-Sn и ​​Cu-Pb. Напротив, для электродов из сплавов Cu-Ag и Cu-Cd каталитическая активность снижена [81].[Стр.21]


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *