Строение глушителя автомобиля: Глушитель. Устройство глушителя автомобиля

Содержание

Глушитель. Устройство глушителя автомобиля

Без выхлопной системы нормальная  работа двигателя внутреннего сгорания практически невозможна. Глушители для автомобилей являются неотъемлемой частью цикла сгорания топлива, и рассчитываются под характеристики определенного мотора. Для автомобилей, снятых с производства, или не поставляющихся официально, замена элементов выхлопа обходится в ряде случаев дорого. Специалисты GSAvto подберут для вас универсальный глушитель из нержавейки с правильными параметрами. Кузова современных авто имеют плотную компоновку, поэтому зачастую этот элемент разделяют на несколько частей. Возможна установка передней (резонатор) и даже средней секции, если пространство под днищем ограничено. Задний глушитель (самая крупная часть) размещается, как правило, в районе багажника, рядом с бензобаком или запасным колесом. Поскольку его корпус сильно нагревается, остальные элементы автомобиля защищаются тепловыми экранами.

Назначение и устройство глушителя

Для чего нужен глушитель?
  • Снижение шума от работающего двигателя.
    Сгорание топлива в цилиндрах представляет собой серию микровзрывов, с соответствующим звуком. Система выхлопа практически полностью нейтрализует этот шум.
  • Уменьшение скорости движения отработанных газов. Если этого не сделать, из выхлопной трубы будет «дуть ветер», как из компрессора, создавая неудобства остальным участникам движения.
  • Снижение температуры выхлопа. Задняя часть глушителя оканчивается трубой, из которой выходят горячие газы. После прохождения через систему выпуска их температура становится безопасной для окружающих.
  • Вывод выхлопных газов за пределы контура авто. Все системы выпуска устроены таким образом, чтобы вертикально поднимающиеся газы (автомобиль не двигается, ветра нет) не попадали в салон естественным путем, и не скапливались под днищем.

Конструкция глушителя

В корпусе расположено несколько секций заданного размера и геометрии. В этих камерах происходит гашение звуковых колебаний за счет сталкивания волн в противофазе. При этом возникают механические вибрации, которые погашаются волокнистым термостойким материалом. Им заполняют полости вокруг секций.

Помимо акустических камер применяется метод разрыва трубы. В камеру входит патрубок, развернутый под небольшим углом. Рядом с ним располагается выходной патрубок. Прежде чем устремится на выход, выхлопные газы охлаждаются в акустической камере и теряют силу звукового давления.

Система лабиринта. Представляет собой несколько секций, в которых вход и выход располагаются не напротив друг друга. Выхлоп, «путешествуя» по лабиринту, теряет силу и звук. Большая площадь стенок помогает рассеять тепло. В автомобилях достаточно места для установки крупного корпуса выхлопной системы. Это позволяет снизить шум и температуру до минимума. А вот глушители для мотоциклов должны быть более компактными, и в конструкции сложно предусмотреть несколько элементов. Поэтому шум мотоциклетного выхлопа сильнее.

Тюнинговые решения

Снижение шума и скорости выхлопных газов уменьшают мощность двигателя. Это небольшая плата за комфорт и безопасность. Если вы хотите сделать авто более спортивным, в сервисе GSAvto можно установить прямоточный глушитель. В его конструкции нет сложных камер и секций – только перфорированная труба. Поэтому поток газов не встречает сопротивления. Но и шум будет гораздо выше, как у гоночных авто.  Мы подберем оптимальный размер для вашего кузова, и новый глушитель даст возможность свободно «дышать» мотору.

Устройство глушителя автомобиля — как правильно глушится звук?

Глушитель являет собою достаточно важную деталь автомобиля, без которой его эксплуатация является невозможной. По своей сути данное устройство отвечает за снижение объема отработанных выхлопных газов, которые выпускаются в атмосферу и наносят ей весьма большой ущерб. Данное происходит посредством из-за особого свойства сопротивления потоку газов, которые выходят наружу из двигательных цилиндров.

Так, данная особенность позволяет развивать значительно большую мощность автомобиля, способствовать уменьшению расходности транспортного средства и сохранению окружающей среды. Помимо этого, устройство глушителя отвечает за уменьшение шума. Это, в свою очередь, происходит из-за того, что глушители могут притуплять силу создаваемого посредством потока воздуха звука, который выходит непосредственно из цилиндров двигателя.

Тем не менее, как и все конструктивные составные автомобиля, данное устройство не является вечным и со временем может приходить в негодность. Так, зачастую это износ, основной причиной которого выступает достаточная близость к влажному или мокрому покрытию дороги. Кроме того, на его благоприятное состояние влияет и качество дорожного покрытия, так как постоянное движение автомобиля по ямам и кочкам может достаточно плачевно сказаться на его функционировании. Бесследно и не пройдет наличие химических веществ, которые, бывает, входят в состав посыпающей смеси на дорогу в зимние времена.

Не очень позитивно на устройстве глушителя сказывается работа при высоких и низких температурах.

Таким образом, все вышеуказанные причины могут тем или иным образом принести вред глушителю. А в совокупности еще и с выхлопными газами, устройство глушителя может подвергнуться коррозии, вследствие чего, тотальному выходу агрегата из строя.

Поскольку автомобильный глушитель является одним из важнейших эксплуатационных элементов автомобиля, он выполняет ряд достаточно важных функций, посредством которых заслуживает особого внимания. Так, кроме того, что глушитель способствует значительному снижению уровня шума выходящих отработанных газов, данное устройство позволяет преобразовывать энергию этих отработанных газов, что сможет уменьшить их скорость, температуру и пульсацию.

Все газы такого рода, которые покидают цилиндры двигателя, находят в своем составе достаточно высокое давление. При своем непосредственном передвижение отработанные газы создают во выпускной системе определенные звуковые волны, которые распространяются значительно быстрее тех же газов. Само устройство глушителя преобразует всю энергию колебаний звуковых в энергию тепловую, посредством чего случается снижение шума в определенном значении. Кроме того, в выпускной системе, посредством применения глушителя, создается определенное противодавление, которое способствует снижению мощности мотора.

1. Схема глушителя простым языком.

Конечно же, на развитие технологий строения выхлопной системы влияет непосредственно технологический прогресс, которые улучшает каждую новую модель автомобиля. Вследствие этого глушители усложняются и сильнее влияют на все технические параметры транспортного средства.

Тем не менее, в автомобильной природе до сих пор не было найдено принципиальной разницы в конструкционных составных устройства глушителя. Так, традиционное устройство глушителя автомобиля будет иметь четыре части: катализатор, приемную трубу, резонатор, и сам глушитель – заднюю часть.

Самую косвенную и посредственную роль играет приемная труба, которая отводит газы в катализатор из выпускного коллектора. Данное устройство в своем арсенале может иметь виброкомпенсатор, который называется «гофра», принимающий всю вибрацию двигателя на себя. Кроме того, данная гофра не дает этой вибрации возможности в том, чтобы перебраться на всю выхлопную систему.

Вслед за приемной трубой располагается катализатор. Данное устройство предназначено для того, чтобы в нем происходило дожигание всех остатков несгоревшего бензина. Кроме того в данном устройстве окись углерода будет переходить в наименее вредную фазу. Такой элемент выхлопной системы составляет бачок, в котором находится металлический или керамический элемент, который имеет вид сот. Через такие элементы все выхлопные газы, при их проходе, будут преобразовываться посредством определенных химических реакций.

Непосредственно за устройством катализатора располагается резонатор и сам глушитель. Данные элементы имеют разности в конструкционных составных и могут снижать шум посредством его гашения, за счет сглаживания всех периодов эксплуатации двигателя. Резонатор являет собою бачок, который имеет перфорированную трубу. Само же устройство глушителя является самым сложным элементом, так как и выполняет самую сложную работу по снижению уровня шума всех выходящих отработанных газов.

2. Как устроен глушитель и как он работает?

Разнообразие глушителей в современном мире просто огромно. Так, его конструкция может зависеть от множества различных факторов: от модели и марки машины, типа и объема двигателя, самого производителя, которые не всегда придерживаются определенной геометрии.

Рабочий принцип устройства глушителя является достаточно простым, так как устройство способствует замедлению потока газов, с целью сглаживания отдельных тактов работы мотора. Определенных стандартов, которые касаются внутреннего строения устройства – нет. Следовательно, производители самостоятельно выбирают формат своего устройства.

Немаловажно строение и проекция самой выхлопной системы транспортного средства, способности сглаживания потолка выхлопных газов и тому подобное. Конечно же, самая большая нагрузка будет приходится непосредственно на устройство глушителя, который должен иметь достаточно внушительный объем и соответственное строение. Если заглянуть в разрез глушителя, то устройство будет напоминать определенное количество трубок с перегородками и перфорацией. Тем не менее, в таком устройстве все силы производителя на тотальном использовании необходимого объема.

Нагретые газы будут достаточно быстро расширятся и заполнять пространство бачка глушителя, посредством отверстия в трубках. Сами перегородки будут отражать все газы в обратном направлении, с целью сглаживания неравномерности поступления отработанных газов.

3. Почему изнашивается глушитель автомобиля?

Главная причина из-за которой приходит в негодность устройство глушителя заключается в прогаре сварочных швов. Устройство глушителя автомобильного имеет некоторые недостатки, так как в местах крепления и соединения перегородок и трубок используется обычная сварка, которая подвергается влиянию влаги и температуры. Данные места являются самыми слабыми и опасными во всем устройстве. Так, если на шве возникает маленькая трещинка, из-за вибрации она постепенно разрастается, что приводит к тотальному краху всего устройства.

Существует еще одна причина, из-за которой устройство глушителя работает достаточно громко. Проблема заключается в выгорании минеральной ваты. Все дешевые выхлопные системы используют некачественную минеральную вату. Данная деталь имеет свойство выгорать, вследствие чего и возникает такой нежелательный шум. Так, глушитель является достаточно сложным устройством, которое неотъемлемое для всех автомобилей, которые используют определенное топливо, которое выделяет выхлопные газы. Именно данное устройство позволяет обеспечить устойчивую работу двигателя автомобиля и комфортабельное передвижение всего транспортного средства.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Как работает автомобильный глушитель? | Статьи, обзоры

Как работает автомобильный глушитель?

Многие владельцы авто уже привыкли, что их автомобиль работает довольно тихо, но не задумывались за счет чего это происходит. Как работает глушитель автомобиля, и из чего состоит глушитель, на эти вопросы мы попробуем ответить в этой статье. Сразу стоит оговориться, мы будем говорить о том, как устроен глушитель на авто обычной заводской комплектации (стоковый глушитель). Есть разные вариации прямоточных, спортивных глушителей, а также модернизированные варианты, о них речь идти не будет.

Глушитель для машины, что это и каковы его функции?

В выхлопной системе глушитель автомобильный играет одну из самых важных функций.  Глушитель в легковой машине располагается под задней частью кузова, зрительно мы видим только выхлопную трубу глушителя, из которой выходят отработанные газы.

Наиболее выраженные свойства глушителя можно описать так:

  • рассеивание звуковой волны, возникающей от детонации топливной смеси в камере сгорания двигателя;
  • окончательное понижение температуры отработанных газов, до 120-150ºС;
  • изоляция салона с водителем и пассажирами от выхлопных газов.

Если с последними двумя пунктами все предельно ясно, то, как устроен глушитель авто, и как происходят процессы глушения звуковой волны, на этом стоит остановиться подробней.

Как устроен автомобильный глушитель?

Функциональная часть выхлопной системы — это банка глушителя. Если посмотреть, как выглядит глушитель в разрезе, то мы можем увидеть, что в ней есть камеры разной величины, которые соединяют перфорированные патрубки. Некоторые патрубки по диаметру больше, некоторые меньше, а сами камеры иногда располагаются под некоторым углом к главному направлению движения отработанных газов. Устроен глушитель машины таким образом, чтобы проходящая звуковая волна через эти камеры, патрубки и лабиринт разбивалась и дробилась, следовательно, снижала уровень энергии, который был у нее при выходе из коллектора.

Как работает глушитель авто с точки зрения движения звуковой волны?

Тут по пунктам:

  • перфорированная труба в глушителе – она позволяет рассеять через перфорацию звуковую волну;
  • камеры разной величины – в камерах происходит отражение и пере отражение звуковой волны, при этом каждый раз происходит ее гашение, т.е. уменьшение энергии;
  • углы в камерах глушителя, а также препятствия – такие элементы дают возможность разделить звуковой поток, с целью его дальнейшего погашения;
  • зауженные (конусоподобные) элементы — иногда и из них состоит глушитель автомобиля. Здесь звуковая волна теряет свои характеристики и частично компенсируется;
  • звукопоглощающий материал – любой термостойкий долговечный пористый материал, который гасит звук и играет роль поглотителя волны.

Любым из указанных способов глушитель у машины заглушает звук. Точнее сказать их комбинации и сочетания позволяют довести уровень шума от работы двигателя до приемлемой величины, приятной для человеческого слуха.

Глушитель автомобильный дает побочный эффект

Мы рассмотрели, как устроен глушитель автомобиля с точки зрения гашения звуковой волны. Однако по этой же самой системе движутся и отработанные газы. Все эти камеры, системы отражения и пере отражения, и другие элементы, из чего состоит глушитель, являются естественным препятствием движению выхлопных газов. То, что работает прекрасно для уменьшения шума от авто, сейчас создает проблему удаления выхлопных газов. В выхлопе создается сопротивление, которое начинает действовать на основной поток отработанных газов, препятствуя ему. В результате возникает обратный поток выхлопных газов, который носит название противоток.

В результате, такой противоток создает давление в выхлопной системе, препятствующее освобождению от отработанных газов камеры сгорания двигателя. Выпускной клапан не отрабатывает на 100%, что приводит к потере полезной мощности мотора.

Как делают глушители?

Перед производителями автомобиля, и выхлопной системы в частности, стоит задача, как должным образом уменьшить шум от работы двигателя, но при этом минимизировать противоток. И такая задача решается для каждой марки и модели автомобиля в отдельности. Все элементы внутреннего строения глушителя рассчитываются и применяются с учетом специфических технических параметров отдельно взятого авто. Расчет особенностей, а также какие технологии применяются для глушения звуковой волны, какой размер будет иметь глушитель для автомобиля, какая у него будет конфигурация, все это решают конструкторы автомобильного завода. При этом глушители, где производятся, особого значения не имеет. Так как конечная конструкция по готовым чертежам или образцу повторяется достаточно легко на любом, более или менее оснащенном производстве.

Глушитель устройство и принцип работы

Устройство глушителя

Многие знают, что для поглощения шума автомобили обладают глушителем. Рассмотрим как устроен глушитель ? Узнаем принцип работы, поговорим о его предназначении. Немного поговорим о прямоточном глушителе и узнаем распространенные поломки глушителей.

Зачем нужен глушитель ?

1) Поглощение шума и вибрации от работы двигателя.

2) Снижение токсичности выхлопных газов.

3) Снижение температуры выхлопных газов.

Устройство глушителя и принцип работы

Глушитель на автомобилях появился ещё давно. Все благодаря французам именно они впервые изобрели глушитель. С тех пор прошло немало времени и конструкция выхлопной системы автомобиля усовершенствовалась.

Каждый год производители стремятся снизить уровень шума, уменьшить токсичность выхлопных газов и сократить потерю мощности ДВС.

Современная выхлопная система состоит из следующих частей:

1) Выпускной коллектор — Вывод выхлопных газов из двигателя. Выхлопные газы имеют очень высокую температуру до 1000 градусов по Цельсию. Поэтому выпускной коллектор создаётся из тугоплавких сплавов.

2) Приёмная труба — Канал от прохода выхлопных газов от выпускного коллектора к нейтрализатору. Нередко имеет виброгаситель для поглощения вибрации.

3D illustration

3) Катализатор — Снижение токсичности выхлопных газов за счёт поглощения углекислого газа. Катализатор находится близко к выпускному коллектору, так как высокая температура способствует более хорошему поглощению углекислого газа.

4) Резонатор — Цель резонатора поглощение шума и вибрации. Внутри резонатора находятся перфорированные трубы, перегородки и шумопоглощающий материал. Цель данной конструкции поглощение шума и колебаний за счёт внутреннего сопротивления.

5) Глушитель — Финальная часть выхлопной системы его функцией является окончательное погашение шума и выброс выхлопных газов.

Немного о прямоточном глушителе

Этот глушитель отличается от обычного тем, что в его конструкции меньше перегородок и каналов. Имеется всего один канал, то-есть одна перфорированная труба по которой проходят выхлопные газы.Благодаря этому удаётся сохранить больше мощности своему автомобилю. Прирост не большой до 10 %, более подробно поговорим о нем в одной из следующих статей.

Частые поломки

1) Сгнивание крепления глушителя

2) Прогар глушителя

3) Коррозия

Глушитель не защищен поэтому очень сильно подвержен воздействию окружающей среды. О том как защитить глушитель от коррозии поговорим в следующей статье.

Если статья была полезной ставьте лайки, подписывайтесь на рассылку и оставляйте комментарии.

лазерная стоматологияmediadomen

Рассмотрим строение глушителя автомобиля

В каждый автомобиль, уже довольно-таки давно, устанавливается глушитель. Иначе эти транспортные средства, оглашали бы улицы, децибельным ревом своих моторов. Более того, сегодня, является очень модным тюнинг выпускной системы, и глушителя в частности. Цели такой модернизации, могут быть разные, от повышения тяговитости двигателя, до предания некой солидности звучанию этого самого двигателя. Как же устроен этот загадочный глушитель, на наших автомобилях, и что он из себя представляет?

Общие сведения

В первую очередь, следует понимать, что при установке выхлопной трубы, на тот или иной автомобиль, ее размеры подбираются согласно с количеством выхлопных газов, которые вырабатываются двигателем. И если некоторое увеличения этого диаметра, будет иметь какой-то смысл, то после определенной черты, этот смысл растает, как облачко выхлопных газов. Поэтому перегибать с размером трубы все-таки не стоит. Но если вы тем или иным способом, изменяете, мощность двигателя, особенно в сторону увеличения этой самой мощности, то сразу, же возникает вопрос, не возникает ли сопротивления в выпускной системе, и не стоит, ли, увеличить диаметр выхлопной трубы.

Таким образом, автомобильный глушитель, это всегда компромисс, между сопротивлением потоку газов, и снижением уровня шума двигателя.

Все автомобильные глушители, разделяются на четыре группы по способу подавления звука:

  • ограничители;
  • отражатели;
  • резонаторы;
  • поглотители;

Глушитель — ограничитель 

Ограничитель, достаточно простая конструкция, которая состоит, из сужения в выпускной системе, а далее напротив большого объема пространства. В сужении звуковые колебания как бы сглаживаются, а далее рассеиваются в большом объеме. Энергия звука, так же нагревает газ. Но такой глушитель, создает достаточно большое сопротивление потоку газов, поэтому назвать его хорошим нельзя, тем не менее, именно эта конструкция, используется в качестве предварительного глушителя, во многих машинах.

Глушитель типа отражатель 

Отражатель, работает на том принципе, что при отражении звуковой как и любой другой волны, часть ее энергии теряется. Таким образом, этот вид глушителя, состоит из множества звуковых зеркал, от которых и отражаются звуковые колебания. Так же энергия звука, затрачивается на нагрев этих самых акустических зеркал. Кстати, пресловутые глушители для излюбленных киллерами пистолетов, тоже работают по подобному принципу. В данном случае, сопротивление, которое создает глушитель на пути потока отработанных газов, куда меньше, но оно, тем не менее, существует. Отражатели чаще всего, используются в оконечных вариантах звуковых систем автомобилей.

Резонаторный глушитель

Принцип работы глушителя резонатора, заключается в том, что рядом с основным трубопроводом, организовываются полости, которые соединяются с основным объемом трубы, при помощи отверстий. При создании резонансных колебаний, основная частота изменяется, и довольно-таки эффективно гасится. Такие глушители хорошо давят низкочастотные шумы, и встречаются в качестве предварительных систем, устанавливаемых на современные автомобили.

Глушитель – поглотитель 

Принцип работы этого вида глушителей, заключается в следующем, звуковые колебания, направляются в специальный пористый материал, которым окружена основная труба. Возникающие в этом материале колебания,  вызывают трение волокон материала, а значит их нагрев. Такой глушитель вообще не создает помех для газового потока, но и звук работы двигателя, приглушает не особенно эффективно.

Что из всего этого следует

Как вы уже поняли, после рассмотрения всех видов автомобильных глушителей, идеального варианта, здесь нет. Кроме того, часто в структуре звукопоглощающей системе конкретного автомобиля, используется несколько типов разных глушителей. Ну как минимум два. Ибо не один из описанных видов этих устройств, не способен обеспечить должный уровень поглощения шума, и при этом, не создавать сильного сопротивления потоку отработанных газов.

Но помимо собственно поглощения звука, особенно в условиях тюнинга автомобиля, заказчики часто высказывают пожелания, предать звучанию мотора, тот или иной звуковой оттенок. Такую себе мощную басовитость, не выходящую впрочем, за рамки приличий. Для изменения тембра голоса вашего мотора, обычно используют сочетание разных видов глушителей. Так, например, глушители поглотительного типа, более качественно, гасят высокочастотные колебания звука, и придают тембру мотора, басовитую бархатистость. Резонаторы же, напротив, успешнее подавляют шумы низкой частоты. И так, изменяя типы глушителя, и их конкретные параметры, вы можете подобрать идеальное голосовое сопровождения для вашей машины.

Так же следует отметить, что для снижения нагрева, а так же шумоизоляции собственно конструкции глушителя, его часто оборачивают, различными материалами, к примеру, для этих целей, используются различные термоизоляторы, на основе асбеста. Это предотвращает нагрев расположенных рядом с глушителем частей автомобиля, а так же, улучшает шумоизоляцию, как внутри автомобиля, ибо колебания меньше передаются на его корпус, так и снаружи.

Следует так же сказать, что современные глушители, позволяют эффективно подавлять шумы, от работающего даже на максимальных оборотах двигателя, или, по крайней мере, снижать эти шумы, до разумных пределов. И таким образом, снижается уровень хотя бы шумового загрязнения окружающей среды.

Вот таким образом, устроены современные глушители, которыми оснащаются автомобили разных типов. А подробнее ознакомиться с работой этих устройств, вы можете на следующем видео.

Похожие материалы

22.01.2014

Как это работает: глушитель — Автомобили Гродно

    Из сегодняшней рубрики «Как это работает» вы увидите подробное устройство глушителя, узнаете для чего нужен катализатор и что такое лямбда-датчик, как достигается благородное низкое звучание глушителя и  можно ли увеличить мощность двигателя тонкой настройкой выхлопной системы.
 

 

 

 

 

 

    Глушитель — устройство, предназначенное для снижения температуры, токсичности и уровня шума выхлопных газов двигателя до приемлемых значений.


    Первые автомобили не были оснащены глушителем, поэтому, в те далекие времена, приближение самоходного агрегата можно было услышать задолго до его появления на горизонте.

 

    Производимый шум вызывал дискомфорт не только у горожан, но и пугал рядом проходящих лошадей, которые в то время были основным средством передвижения. Глушитель стал решением этих проблем, и впервые он был применен лишь в 1894 году на автомобиле «Панар-Левассор» (Франция), что способствовало популяризации автомобилей среди городского населения.

 

 

 

 
    Глушитель устроен таким образом, чтобы эффективно снижать скорость поступивших в него газов из цилиндров двигателя. Однако автомобильный глушитель помимо своих плюсов имеет также и недостатки, например, некоторое снижение мощности двигателя. Как это получается? Если упростить, то это можно представит так. Отработанные газы на высокой скорости вылетают из цилиндров двигателя в глушитель. Там, встретив препятствия на пути, часть потока отражается, тем самым образует «обратную волну», пытаясь вернуться в цилиндр, чем и снижает мощность двигателя на выходе.


    Благодаря законам физики существует несколько принципов снижения уровня звука, которые с успехом используются в конструкциях современных автомобильных глушителей. Принцип ограничения: когда в корпусе глушитель имеет зауживание диаметра трубы, которое дает некоторое акустическое сопротивление, а затем следует резкий переход на больший диаметр. В этой «внезапной» емкости звуковая энергия рассеивается.


    Принцип отражения: при отражении энергия частично рассеивается, поэтому поставив на пути звука лабиринт из «зеркал» можно значительно снизить уровень шума.

 

       Резонаторы: глушители такого типа используют замкнутые полости, которые расположены вблизи трубопровода и соединены с ним отверстиями, которые выступают в роли резонатора. Условия, с которыми распространяется резонансная частота, быстро меняются и это способствует эффективному гашению шума при прохождении через отверстия.
 
    Принцип поглощения: такие системы работают через поглощение звуковых волн, специальным пористым материалом.

 

Распространенная конструкция автомобильного глушителя:

 

  1 – каталитический нейтрализатор
2 – передний глушитель
3 – задний глушитель
 

 

 

    Каталитический нейтрализатор (катализатор) — призван снизить вредное воздействие выхлопных газов на окружающую среду (снижение токсичности).  Это специальная камера, где происходит дожигание смеси и удерживание вредных веществ посредством сот с напылением из благородных металлов: платины и палладия.

 


 

 


       Передний (основной) глушитель предназначен для снижения резонансного эффекта отработавших газов. При помощи сложной системы решеток и отверстий в нем удается снизить скорость, температуру и уравновесить вибрационные воздействия от движения выхлопных газов (резонатор). Передний глушитель позволяет добиваться существенного снижения скорости воздушного потока.
 

    Задний (дополнительный) глушитель выполняет функцию окончательного поглощения шума от выхлопных газов благодаря сложной внутренней структуре или специальному шумогасящему наполнителю. Благодаря большому количеству пористых элементов, сложной системе перегородок и воздуховодов удается еще больше снизить температуру и скорость воздушного потока (поглощение, отражение).

 

 

 

Дополнительный и основной глушитель

     Лямбда-датчик:

 



 

 

    Для бензиновых двигателей уже давно стало привычным делом использование в конструкции глушителя лямбда-датчиков. Этот датчик определяет концентрацию кислорода в выхлопных газах, тем самым фиксирует, насколько реальная пропорция топлива с воздухом, сгораемая в цилиндрах, отличается от оптимальной (1 порция топлива на 14.7 порций воздуха). Электрический сигнал от кислородного датчика поступает в  электронный блок системы управления двигателем. В зависимости от величины сигнала блок управления воздействуют на исполнительные органы подконтрольных ему систем автомобиля и порция подаваемого топлива увеличивается или уменьшается. Благодаря лямбда-датчику в цилиндр подается оптимальная топливно-воздушная смесь.
  1 – передний лямбда-датчик
2 – задний лямбда датчик
3 – катализатор
4 – дополнительный глушитель
 

 
    Ремонт глушителей: часто восстановить поврежденные места глушителя можно сваркой, если он пробит острым предметом. Иногда помогает силикатный клей и стеклоткань. Прогоревший глушитель варить нежелательно, так как в скором времени он «прохудится» снова. В этом случае не избежать покупки нового глушителя.


    Покупать, желательно, оригинальный глушитель. Если нет такой возможности, можно подобрать максимально подходящий по форме, размерам и объему глушитель от другого автомобиля. В этом случае надо знать, что, устанавливая «чужой» глушитель, есть риск снизить мощность двигателя или вызвать его чрезмерный износ, так как для каждой модели автомобиля глушитель разрабатывается индивидуально, с учетом объема и характеристик двигателя. Важным условием при подборе неоригинального глушителя является его внешнее и внутреннее сходство с «родным». Так же, двигатель автомобиля, с которого этот глушитель был снят по характеристикам должен походить на установленный в Вашем автомобиле.

 

 

 

    Прямоточный глушитель:
       Набивка такого глушителя способна погасить лишь высокочастотный шум. Шумы на низких частотах проходят по прямой (отсюда  название). Так получается низкий бас, которым обладает прямоточный глушитель.
 

 

    Для снижения уровня шума, чаще всего используют длинный резонатор, построенный по сетчатому признаку. Звук, многократно отражаясь от стенок, покрытых ячейками, взаимно гасится. Резонатор позволяет эффективно срезать верхние частоты, придавая звуку благородный, басовый «рык».


    Нейтрализация отработавших газов в прямоточном глушителе, как правило, менее надежная, чем в стандартных, и предназначена лишь для удаления основной части вредных соединений.


    Для тюнинга можно использовать универсальные, штатные (предназначенные для конкретной модели автомобиля) и оригинальные глушители. Универсальные запчасти, включая тюнинговые или спортивные детали, выпускает множество фирм: ASSO, Blitz, HKS, Powerful, Remus, Sebrin, Walker, Ulfer и т.д. Большинство спортивных глушителей можно поставить на все без исключения автомобили определенного типа (питание, литраж, класс).


    Увеличение мощности автомобильного двигателя за счет совершенствования выхлопной системы невозможно без грамотной настройки двигателя под возросшие возможности глушителя. В случае удачной настройки компонентов глушителя и двигателя, прирост мощности может составить 3-7%, что не очень много в абсолютных величинах. Таким образом, тюнинг глушителя скорее вспомогательная мера для увеличения мощности. В основном же тюнинг применяют для придания автомобилю законченного, агрессивного внешнего вида, облагораживании звучания автомобильного мотора.

 

 

Основная часть глушителя спрятана от зрителей и увидеть можно лишь банку на глушитель, поэтому к ней, как к элементу стайлинга, особое внимание:

 

 

Глушитель автомобиля – устройство, функции, из чего состоит

Еще недавно выхлопная система служила для отвода отработанных газов и снижения уровня шума во время езды. Она воспринималась как вспомогательная и не столь важная, как другие агрегаты. Сейчас устройство глушителя автомобиля играет гораздо большую роль, чем раньше. В первую очередь – повышение эффективной работы двигателя.

Схема глушителя простым языком

Выхлопная система автомобиля

Выхлопная система с каждой новой моделью авто усложняется и более сильно влияет на характеристики машины. Но, принципиальной разницы в конструкции глушителя пока не существует.

Традиционный глушитель автомобиля можно разделить на четыре части:

  • приемную трубу,
  • катализатор,
  • резонатор,
  • заднюю часть, собственно – глушитель.

Приемная труба играет промежуточную роль, отводя газы из выпускного коллектора в катализатор. На ней может быть установлен виброкомпенсатор, в народе называемый «гофрой», который принимает на себя вибрацию двигателя и не дает ей передаваться на выхлопную систему.

После приемной трубы расположен катализатор, в котором дожигаются несгоревшие остатки бензина, а окись углерода переходит в менее вредную фазу. Этот элемент системы представляет бачок, внутри которого находятся керамический или металлический элемент, выполненный в виде сот. Проходя через них выхлопные газы преобразуются за счет химической реакции.

За катализатором расположены резонатор и, собственно, глушитель. Они имеют различную внутреннюю конструкцию и снимают шум не только за счет того что гасят его, но и за счет сглаживания тактов работы двигателя. Резонатор по своей структуре прост, он представляет бачок с перфорированной трубой,  ну, а устройство глушителя гораздо сложнее. Именно он выполняет основную функцию по снижению уровня шума выходящих выхлопных газов.

Как устроен глушитель и как он работает?

Все описанное выше – только основные положения. Из чего состоит глушитель зависит от многих факторов, а именно: от марки автомобиля, модели, его объема и типа двигателя, а также от производителя – не всегда вторичные производители придерживаются оригинальной геометрии. При проектировании внутренней начинки глушителя используются стандартные приемы – обустройство перфорированных патрубков, перегородок и набивка жаростойкой ватой.

Принцип работы глушителя прост – он призван замедлить поток газов, чтобы сгладить отдельные такты работы двигателя. Нет каких-либо определенных стандартов по его внутреннему строению, поэтому каждый производитель ищет свои решения. Любой глушитель в разрезе может отличаться от аналогичной детали других производителей.

Немалую роль играет то, как спроектирована выхлопная система автомобиля. Например, если объем резонатора невелик, он не сможет в достаточной мере сглаживать поток выхлопных газов. Соответственно, большая нагрузка приходится на глушитель, он должен иметь немалый объем и соответствующее строение. Глушитель в разрезе напоминает нагромождение трубок с перфорацией и перегородок, но в нем все спроектировано таким образом, чтобы максимально эффективно использовать его объем.

Через отверстия в трубках нагретые газы быстро расширяются и заполняют пространство бачка глушителя, а перегородки отражают их в обратном направлении, чтобы сгладить неравномерность поступления выхлопных газов. Жаропрочная минеральная вата сдерживает ударные волны газов, предохраняя стенки бачка, чтобы избежать лишних шумов.

Почему изнашивается глушитель автомобиля?

Основная причина, по которой глушитель приходит в негодность – прогар сварочных швов. Устройство автомобильного глушителя таково, что в местах соединения и крепления трубок и перегородок, используется обычная сварка, которая более подвержена влиянию температуры и влаги (особенно это касается автомобилей, работающих на бензине).

Она и является слабым местом любого глушителя. Когда на шве появляется небольшая трещинка, она начинает увеличиваться за счет вибрации выхлопной системы, неизбежной при езде. Как результат – трубки обрываются, перегородки отделяются от стенок, и появляется нежелательный шум.

Но есть и вторая причина, по которой глушитель может работать громко – выгорание минеральной ваты. Выхлопные системы дешевых производителей грешат тем, что в них используется некачественная минеральная вата. Она выгорает, волокна разрушаются и их частички выходят с потоком выхлопных газов. Как результат – появление нежелательного шума, который будет все громче с каждым новым километром пробега.

Как мы видим, глушитель это не просто металлическая «банка», подвешенная под днищем автомобиля, равно как и вся выхлопная система, частью которой он является. Его устройство рассчитывается профессионалами, чтобы обеспечить максимально: устойчивую работу двигателя авто и комфортную езду. Качественный глушитель по определению не может быть дешевым, это полноценная деталь автомобиля, которая подлежит периодической замене.

Конструкция глушителя выхлопа | Quadratec

Первый глушитель был запатентован в 1897 году Маршаллом и Милтоном Ривзом. Глушитель является основным компонентом выхлопной системы для подавления акустических шумов выхлопных газов. Сегодня доступно множество различных конструкций глушителей. Некоторые из них — это камеры, стеклопакеты, стеклопакеты с прямым проходом и их комбинации. Он разработан для уменьшения громкости и акустического звукового давления, создаваемого процессом горения. Стекловолокно — наиболее часто используемый материал для изготовления традиционных глушителей.Другие материалы могут включать минералы, шерсть, волокнистый мат или простые металлические камеры, чтобы способствовать поглощению и уменьшению нежелательных звуков выхлопа.

Расположение глушителя зависит от марки и модели автомобиля. Большинство глушителей расположено ближе к задней части автомобиля. Внутренние конструкции глушителя (камеры глушителя) определяются звуковыми частотами, нуждающимися в контроле. Глушителю можно придать разные формы, но наиболее распространенными являются круглая и овальная формы.

Для эффективного выполнения своей работы глушитель должен быть специально разработан для автомобиля, с которым он работает. Многие факторы определяют размер, форму и внутреннюю структуру глушителя. Внутренний дизайн специально разработан только для управления звуком и редко проектируется с учетом характеристик на заводе. Модели спортивных автомобилей более высокого класса будут иметь глушители, более рассчитанные на производительность, а не на подавление шума выхлопных газов. Послепродажные выхлопные системы почти всегда будут ориентироваться на аспект производительности и предлагать более низкий звук выхлопа.

Внутри глушителя

Внутренняя конструкция глушителя может представлять собой комбинацию камер, перегородок, решетчатых и сплошных труб. Это также может быть единственная конструкция, обычно называемая «сквозной». Проходные конструкции обычно представляют собой стеклопакеты с одной прямой трубой, идущей от входа к выходу.

Количество, расположение и общая конструкция трубок, камер и перегородок, используемых в глушителе, зависят от звуковых частот, производимых двигателем.Некоторые камеры внутри глушителя вообще не имеют выхода, а некоторые имеют небольшое отверстие, ведущее в другую камеру. Они называются тюнерами Гемгольца, и они уменьшают низкие звуковые частоты, отклоняя волны друг от друга и вызывая эффект шумоподавления. Камеры меньшего размера или консервные банки подавляют высокие звуковые волны, направляя выхлопные газы через их акустические отверстия в камеры большего размера.

Характеристики внутренней структуры глушителя сильно различаются в зависимости от автомобиля, поскольку он будет «настроен» на это конкретное применение.Это обеспечивает наиболее эффективный способ повышения производительности при изменении формы звука выхлопа. Следует отметить, что чем больше выхлопные газы вращаются в системе, тем выше противодавление создается в глушителе. Поэтому внутренняя конструкция глушителя имеет решающее значение.

Снаружи глушителя

Внешне глушитель должен физически соответствовать ограниченному пространству под кузовом автомобиля. Габаритные размеры и форма глушителя определяются доступным пространством.Правильный дизайн и физическое размещение важны по следующим причинам:

  • Обеспечивает надлежащий зазор до автомобиля под кузовом.
  • Предотвращает чрезмерный нагрев половиц.
  • Обеспечивает безотказную установку.
  • Обеспечивает надлежащий зажим для предотвращения опасных утечек.
  • Устраняет натяжение подвесных опор.

Конструкция глушителя

Глушитель должен выдерживать условия эксплуатации транспортного средства.Сюда входят звуковые частоты двигателя, опасные условия вождения (бездорожье), и, прежде всего, глушитель должен выдерживать ржавчину и коррозию. Некоторые из основных причин преждевременного выхода из строя глушителя следующие:

  • Разрыв после пожара (обычно ошибочно принимается за ответный пожар)
  • Внутренняя коррозия из-за кислого конденсата
  • Внешняя коррозия от природных и искусственных элементов (например, соленая вода и дорожная соль)
  • Плохая или неправильная опора выхлопной системы (т.е. — вешалки заржавевшие и сломанные)

Для защиты от разрывов после пожара головки глушителя прикреплены к корпусу с помощью винтовой фиксации, чтобы обеспечить максимальное сопротивление этому сценарию. Внутренняя оболочка и внешняя крышка также устанавливаются на 180 градусов друг от друга с помощью шва механической блокировки. Головки с блокировкой вращения и шов с замком корпуса также обеспечивают газонепроницаемое соединение между головкой и оболочкой.

Когда выхлопные газы проходят через каталитический нейтрализатор, одним из побочных продуктов химической реакции является вода.В нижней части глушителя имеется ряд отверстий для штифтов, через которые вода может выходить. Если эти отверстия забиваются и вода не может выйти или испариться достаточно быстро, глушитель начнет ржаветь изнутри. Не пейте эту воду, она не совсем чистая! Как правило, при езде по шоссе или по городу глушители будут оставаться достаточно горячими, чтобы испарилась вся скопившаяся вода. Движение на короткие расстояния и движение с частыми остановками на низкой скорости могут вызвать скопление чрезмерного количества воды в системе.Однако нечего бояться или волноваться.

  • Трубки с жалюзи — Эти трубки обеспечивают лучший поток газа для поддержания более однородной внутренней температуры. Избегая холодных мест внутри глушителя, можно предотвратить конденсацию кислоты.
  • Внутренняя дренажная система — Полная внутренняя дренажная система предотвращает скопление большей части воды внутри глушителя. Выходы можно увидеть на дне глушителя или рядом с выпускной трубкой.
  • Перегородки, сваренные точечной сваркой — Перегородки прикрепляются к кожуху глушителя точечной сваркой. Идея состоит в том, чтобы сохранить прочность, но также оставить небольшое количество места для выхода отработанной воды, чтобы она могла стекать.
  • Внутренние трубы с механическим соединением — Чтобы продлить срок службы, внутренние трубы механически соединяются с перегородкой, чтобы обеспечить свободное расширение и сжатие при изменении температуры.Эта уникальная конструкция исключает разрыв точечной сварки и последующее деформацию деталей или проблемы с шумом незакрепленных деталей.

РЕЗОНАТОР

Резонатор — это второй элемент глушителя, который используется на некоторых транспортных средствах с ограниченным пространством кузова. Когда глушитель, необходимый для устранения шума выхлопных газов, слишком велик, чтобы легко поместиться под автомобилем; Затем будут использоваться два глушителя меньшего размера. Резонатор служит для выравнивания любой громкости или неровностей, с которыми не справляется глушитель меньшего размера.

Как работает глушитель?

Ответ: Глушители являются частью выхлопной системы вашего автомобиля и расположены в задней части автомобиля. Они помогают снизить выбросы транспортных средств и шум двигателя. Они изготовлены из стали и покрыты алюминием для защиты от тепла и химикатов, выделяемых из выхлопной системы. Глушители используются в основном для подавления громких звуков, создаваемых поршнями и клапанами двигателя. Каждый раз, когда ваш выпускной клапан открывается, в выхлопную систему попадает большой выброс сгоревших газов, используемых при сгорании вашего двигателя.Этот выброс газов создает очень мощные звуковые волны. Чтобы понять, как глушитель рассеивает звуковые волны, создаваемые вашим двигателем, необходимо понимать, как создается звук. Звук — это волна давления, образованная вибрациями. Эти колебания представляют собой импульсы переменного высокого и низкого давления воздуха. Итак, каждый раз, когда ваш выпускной клапан открывается, в выхлопную систему попадает газ под очень высоким давлением. Эти газы высокого давления будут сталкиваться с молекулами низкого давления, создавать волны давления (звук) и проходить через выхлопную систему.Итак, как именно глушитель рассеивает эти громкие звуковые волны? Звук действительно можно отключить. Если вы можете ввести волну давления, которая является полной противоположностью исходной звуковой волны, то есть их длины волн или точки высокого и низкого давления противоположны, они компенсируют друг друга, и звука нет. Другой способ описать то, что происходит, — это когда одна звуковая волна достигает максимального давления, а другая звуковая волна — минимального давления; Итак, они компенсируют друг друга. Это называется деструктивным вмешательством и происходит внутри глушителя.Конструкция глушителя очень проста, но очень точна. Внутри глушителя есть трубки с перфорацией, которые направляют звуковые волны через внутреннюю часть глушителя и наружу. Звуковые волны будут проходить через центральную трубу, ударяться о заднюю стенку, проходить через отверстие и попадать в центральную камеру. Затем звуковая волна пройдет через другое отверстие и войдет в камеру резонатора, которая находится сзади по направлению к передней части глушителя, куда звуковые волны впервые вошли. Теперь часть звуковой волны будет отражаться от стенки центральной камеры, а остальная часть пройдет через отверстие в камеру резонатора.Резонаторная камера имеет очень специфическую длину для того, чтобы производить звуковые волны, которые подавляют другие волны. Длина резонаторной камеры рассчитана таким образом, что, когда звуковая волна ударяется о заднюю стенку резонаторной камеры и возвращается обратно через отверстие, в которое она попала, она встречает следующую звуковую волну именно тогда, когда она ударяется о стенку центральной камеры. Таким образом, звуковая волна высокого давления, прошедшая через резонатор, соединится со звуковой волной низкого давления, которая отражается от стенки центральной камеры, и нейтрализует друг друга.Каждый аспект глушителя предназначен для снижения шума. Даже стенки глушителя специально спроектированы; они действительно способны поглощать некоторые волны давления. Теперь вернемся к трубкам с перфорацией. Эти перфорации позволяют тысячам крошечных волн давления выходить в центральную камеру, отражаться от стенок и нейтрализовать друг друга. По сути, глушитель специально разработан для управления отражением звуковых волн от его стенок и нейтрализации друг друга.

Оптимизация шума глушителя выхлопа спецтехники на основе улучшенного генетического алгоритма

1.Введение

Все более серьезные выбросы и шумовое загрязнение были вызваны быстрым развитием автомобильной промышленности, и во многих странах были приняты обязательные стандарты, касающиеся шума транспортных средств. В автомобиле было много источников шума, включая шумы системы охлаждения, шумы двигателя, шумы вибрации кузова, аэродинамические шумы и шумы системы привода. Согласно множеству экспериментов, на шум автомобиля в основном влияли шумы двигателя и выхлопных газов.Однако на шум двигателя повлияло множество факторов, оптимизация которых была очень сложной. Напротив, конструкция глушителя с низким уровнем шума и снижение шума выхлопных газов были экономичным и эффективным методом.

Глушители для труб с микроперфорацией, основанные на теории звукопоглощения микроперфорированной пластины [1-3], были предложены для шумоподавления в воздуховоде. Благодаря хорошим акустическим характеристикам [4] он широко используется в различных областях [5-10]. Рабочие характеристики глушителей из перфорированных труб были изучены, и Луи провел расчет оптимизации на основе метода конечных элементов [11].Принимая во внимание соединение между глушителем с перфорированной трубой и двигателями, компания Zhong исследовала метод оптимизации конструкции глушителя [12]. Посредством метода конечных элементов (FEM) Росс [13] смоделировал акустическую систему перфорированных пластин и рассчитал потери передачи простой перфорации. Его результаты вычислений хорошо согласуются с экспериментальным результатом в области низкой частоты, но при больших отклонениях в средней и высокой частоте. Джи [14] предложил многодоменную МГЭ для прогнозирования характеристик устранения шума глушителя с трехходовой перфорированной трубой, результаты численного прогнозирования которого согласовывались с экспериментальными результатами.Применяя одномерный аналитический метод и трехмерную подструктуру BEM, Джи [15] предсказал характеристики шумоподавления прямоточного трубного глушителя, указав эффективный частотный диапазон одномерной теории. Кроме того, им было исследовано влияние скорости перфорации и геометрических параметров на акустические характеристики перфорированных легких глушителей.

Тем не менее, исследуемый перфорированный глушитель был в основном предназначен для шумов средних и высоких частот свыше 100 Гц, тогда как низкочастотные шумы ниже 100 Гц было трудно устранить.Чтобы устранить шумы менее 100 Гц, есть два способа. Один из способов — увеличить объем выхлопной системы, а другой — изменить внутреннюю структуру глушителя и улучшить звукопоглощающую способность на низких частотах, когда объем глушителя такой же. Из-за ограниченного пространства шасси автомобиля увеличение объема выхлопной системы практически невозможно реализовать. Поэтому внутренняя структура выхлопной системы изменена для увеличения способности глушить низкочастотный звук при неизменном объеме выхлопной системы.

2. Рев-диагностика выхлопной системы для спецавтомобиля

На примере спецтехники проведена субъективная оценка. Результаты экспериментов показали, что значительный рев был при ускорении второй передачи, а скорость вращения составляла около 1400 об / мин. Автомобиль испытывался на второй передаче и полном разгоне. Как показано на рис. 1, микрофоны были помещены в правые уши водителя и второго пилота перед автомобилем. Как выяснилось из результатов, уровни звукового давления (SPL) в правом ухе водителя имеют значительное пиковое значение при 1400 об / мин, в то время как правое ухо второго пилота — нет.Для решения этой проблемы были извлечены кривые звукового давления второго и четвертого порядка на драйвере, а затем соответствующие результаты сравнивались с общими, как показано на рис. 2.

Рис. 1. Положения микрофона для проверки внутреннего шума

Рис. 2. Кривые уровня звукового давления правого уха водителя

Как видно из рис. 2, рев при 1400 об / мин вызван в основном вторым порядком.Шум второго порядка исходит в основном от глушителя двигателя [11]. Поэтому глушители необходимо изучить. Кроме того, шум в салоне также велик при примерно 5500 об / мин. Однако двигатель транспортного средства не может развивать такую ​​высокую скорость при нормальном вождении, на что можно не обращать внимания.

2.1. Эксперименты по шуму выхлопной трубы

Чтобы дополнительно проверить влияние глушителя выхлопа на внутренний шум, был проведен эксперимент по внутреннему вкладу в полубезэховой камере для шума выхлопной трубы специального автомобиля.Как показано на рис. 3, автомобиль был закреплен на вращающейся ступице. В правом ухе водителя был размещен микрофон, а другой микрофон был расположен на расстоянии 50 см прямо от выхлопной трубы и под углом 45 градусов к оси выхлопной трубы.

Эксперимент проводился на второй передаче и полностью открытой дроссельной заслонке для сбора данных в диапазоне от 1000 до 6000 об / мин. Сначала был проведен эксперимент с исходным состоянием, а затем безэховая коробка была снова подключена к выхлопной трубе для эксперимента, при этом положение микрофона на выхлопной трубе осталось неизменным.

Рис. 3. Полевые испытания автомобилей с вращающейся ступицей

2.2. Анализ экспериментальных данных

Затем данные, полученные экспериментально, были обработаны, результаты которых показаны на рис. 4.

Как показано на рис. 4, рев при 1400 об / мин эффективно устраняется после подключения безэховой коробки к выхлопной трубе, что указывает на то, что такая проблема в транспортном средстве действительно вызвана нерациональной конструкцией глушителей.Поэтому необходимо провести оптимизацию конструкции глушителя. Если только путем экспериментов, то срок проектирования глушителей будет увеличен, а также увеличена его стоимость. Поэтому в статье для оптимизации конструкции глушителя делается попытка использовать трехмерный метод конечных элементов.

3. Основные теории
3.1. Трехмерный FEM

С учетом двух сред, включая отверстия для поглощения воздуха и звука, глушитель с перфорированной трубой разделен на две области Ωa и Ωb.И граница разделена на вход, выход, жесткую стенку и перфорированную стенку, которые представлены Si, So, Sw и Sp соответственно. Во всех регионах основным уравнением трехмерного распространения звука является уравнение Гельмгольца, как показано ниже.

В области Ωa может быть получена следующая формула:

Аналогичным образом в области Ωb может быть получена следующая формула:

, где pa, pb, ka и kb — звуковое давление и волновое число воздуха и звукопоглощающей среды, соответственно.

Рис. 4. Сравнение шума до и после подключения безэховой коробки

a) Общий уровень звукового давления до и после подключения безэховой коробки

б) Состояние второго порядка до и после подключения безэховой коробки

c) Состояние четвертого порядка до и после подключения безэховой коробки

Граничные условия расчета звукового поля для глушителей следующие.

1) Внешняя поверхность глушителей представляет собой жесткую стенку, нормальная скорость которой равна 0. Следовательно, можно получить следующее уравнение:

2) Вход глушителя определяется как граничное условие скорости частицы, которое здесь установлено un = 1. Следовательно, можно получить следующее уравнение:

3) Выход глушителя настроен на полное всасывание, а именно:

4) Посредством контакта акустического импеданса перфорированных элементов, скорость вибрации un и скачок давления Δp нормальной частицы в точках Sp1 и Sp2 перфорированных участков стенки, показанных ниже:

(6)

pp1-pp2uana = ρacaξp.

ξp — акустический импеданс перфорированной стенки, pp1 и pp2 — звуковые давления на одной стороне от воздуха и звукопоглощающего материала в перфорированной стене.

Уравнение конечных элементов имеет следующий вид:

(7)

Ma00Mb-Sa00Sb + Da000papb + jkaξpCp11-Cp12-Cp21Cp22papb = Fa0,

где:

(8)

Ma = Ωa∇N∇NTdV,

(9)

Mb = ρaρb∫Ωb∇N∇NTdV,

(11)

Sb = ρaρb∫Ωbkb2NNTdV,

(13)

Cp11 = Cp12 = ∫Sp1NNTdS,

(14)

Cp21 = Cp22 = ∫Sp2NNTdS,

, где N — вектор-столбец действительной функции.

Звуковое давление в каждом узле может быть получено путем решения уравнения. (7). В результате можно вычислить потери передачи глушителя.

3.2. Потеря передачи

Потери при передаче определяются как разница между уровнями падающей звуковой мощности на входе и уровнями звуковой мощности передачи на выходе, которая может быть выражена следующим образом:

(16)

TL = 20lg10S1S21 / 2p1 + ρ0c0υ12p2,

, где p1 и υ1 — звуковое давление и скорость частиц на входе соответственно.p2 — звуковое давление на выходе. Когда заданы скорость частицы и скорость частицы υ1 на входе, можно применить метод конечных элементов для вычисления звукового давления p1 и p2 на входе и выходе. Затем потери передачи глушителя можно получить, подставив их в формулу. (16).

4. Численный расчет и экспериментальная проверка потерь передачи
4.1. Численный расчет потерь передачи

Как видно из рис. 5, глушитель представляет собой трехкамерную конструкцию и вывод всасывающего патрубка расположен близко.Воздушный поток выбрасывается из небольшого отверстия, проходит во вторую камеру (которая заполнена пеной глушителя) через перфорированную пластину, а затем снова попадает в первую камеру через перфорированную трубу. По конструкции выхлопной системы было получено, что этот глушитель не может снизить шум на низких частотах, а увеличение объема выхлопной системы — наиболее удобный и эффективный способ улучшить звукопоглощающие способности на низких частотах. . Однако улучшение объема выхлопной системы не может быть достигнуто из-за ограниченного пространства шасси.Следовательно, увеличение звукоизоляции на низких частотах может быть реализовано только путем регулировки внутренней конструкции выхлопной системы.

Рис. 5. Внутреннее устройство глушителей

Рис. 6. ПЭМ сеток глушителя

Рис. 7. Перспективная модель МКЭ сеток глушителя

Во-первых, в ГИПЕРМЕШ импортирована геометрическая модель глушителя.Затем была проведена очистка геометрии галтелей и небольших отверстий глушителя, чтобы улучшить качество сетки и точность вычислений. Конструкция глушителя была разделена на ячейки тетраэдрическими элементами, размер элемента составлял 3 мм. Внутренние перегородки соединялись с камерами совмещенными узлами. Внутренний воздух обрабатывался с помощью элементов тетраэдра, и воздух был соединен со структурой глушителя также соузлами. Для средней камеры, показанной на рис.5, между перфорированной трубой и внешней структурой глушителя был заполнен пенопласт глушителя, и это также можно было смоделировать с помощью совмещенных узлов. Итоговая сеточная модель глушителя представлена ​​на рис. 6 и содержала 68958 элементов и 78539 узлов. Глушитель был стальным. Модуль упругости 210 ГПа. Плотность составляла 7800 кг / м 3 , а коэффициент Пуассона составлял 0,3. Скорость звука во внутреннем воздухе составляла 340 м / с, а плотность внутреннего воздуха составляла 1,225 кг / м 3 .На рис. 7 показан прозрачный вариант сетчатой ​​модели глушителя, из которого видно, что глушитель имел три камеры и две перегородки.

Рис. 8. Путь передачи звука в глушителе

Путь распространения шума внутри глушителя показан на рис. 8. Глушитель имел три камеры. Звук сначала шел из трубы 1 в глушитель. После этого часть звука передавалась в трубу 2 и камеру 2 через небольшие отверстия в трубе 1, а другой звук передавался непосредственно в камеру 3 через небольшие отверстия на конце трубы 1.Поскольку камера 3 была закрыта, звук будет перемещаться внутри нее и постепенно рассеиваться. Через небольшие отверстия в Pipe1 и Pipe 2 звук попадет в камеру 2 и будет быстро поглощен пеной глушителя внутри этой камеры. Часть звука внутри трубы 2 войдет в камеру 1, которая также была закрытой структурой, а затем звук будет распространяться внутри этой камеры и постепенно рассеиваться. Кроме того, часть звука из Pipe 2 будет напрямую попадать в окружающую среду.Конечно-элементная модель глушителя была построена на основе геометрической структуры, а внутренние трубы и отверстия будут включены в конечно-элементную модель. Поэтому модель конечных элементов затем была импортирована в программное обеспечение для акустической обработки Virtual.lab, и были установлены свойства материала. Между тем, сетка была предварительно обработана, чтобы получить сетку огибающей поверхности глушителя, которая использовалась в качестве акустической сетки. Затем были определены свойства конструкционного материала и воздуха.Отверстия в двух трубах были смоделированы с использованием проводимости для повышения эффективности и точности вычислений. Затем к входу трубы 1 в конечно-элементной модели применялось возбуждение, и две точки поля были установлены на расстоянии 50 мм от входа и выхода, соответственно, как показано на рис. 9. И затем акустические характеристики трубы. глушитель был рассчитан, и контур звукового давления для поверхности глушителя был извлечен, как показано на рис. 9. Кроме того, кривые уровня звукового давления для двух точек поля могут быть извлечены, а звуковые давления на входе и выходе были обработаны для получения потерь передачи глушителя, как показано на рис.10.

Рис. 9. Контур звукового давления поверхности глушителя

4,2. Экспериментальная проверка потерь передачи

Как видно из рис. 7, было известно, что внутренняя конструкция глушителей очень сложна. Следовательно, необходимо было проверить потери передачи, рассчитанные методом FEM.

Было два глушителя спереди и сзади автомобиля, как показано на рис.11, которые были подключены через прямую трубу. Затем на одном конце был установлен динамик в качестве источника звука. Кроме того, как на входе, так и на выходе, исследуемых в данной статье, был размещен датчик. Наконец, программа MATLAB была применена для обработки звуковых давлений на входе и выходе. Наконец, были получены потери передачи глушителей и сопоставлены с расчетным результатом, как показано на рис. 12.

Рис. 10. Кривая трансмиссионных потерь глушителей

Рис.11. Эксперимент по потерям передачи глушителей

Рис. 12. Сравнение экспериментальных и симуляционных потерь при передаче

Как видно из рис. 12, результаты экспериментов и моделирования потерь передачи мало различаются, максимальная разница составляет не более 5 дБ. Указывается, что расчетная модель в этой статье надежна и может быть использована для последующего оптимизационного анализа.

Потери передачи глушителя были относительно плавными на рис. 12 и были нормальными. Действительно, было много пиков и впадин в потерях передачи для общих конструкций, таких как приборная панель, крышка головки блока цилиндров и другие тонкостенные детали. И основные причины были следующие. С одной стороны, их структурные модалы были плотными. С другой стороны, их структурная вибрация может легко вызвать радиационные шумы. Однако для глушителя, изучаемого в этой статье, кривые потерь при передаче были относительно гладкими, и соответствующие причины могут быть получены из следующих пунктов.Во-первых, глушитель имел несколько резонансных камер, и когда звук попадал в резонансные камеры, он терял большую часть своей энергии и едва мог погаснуть. В результате невозможно представить шумы вибрационного излучения, вызванные множеством структурных модалей. Во-вторых, в этой статье изучались только низкочастотные шумы (ниже 500 Гц), а количество модалей для низких частот было относительно небольшим, поэтому соответствующие кривые потерь передачи выглядели гладкими. Собственно, кривые потерь передачи для глушителей в опубликованных статьях также были очень гладкими.Например, применив метод модального зацепления, Ву исследовал потери передачи цилиндрического глушителя с камерой расширения [16]. Когда анализируемая частота была ниже 500 Гц, кривая потерь передачи была очень гладкой. Ву также обнаружил, что отношение длины к диаметру расширительной камеры глушителя влияет на уровень флуктуации потерь передачи на средних и высоких частотах, но не оказывает значительного влияния на форму низкочастотных шумов. Чиу провел экспериментальные и теоретические исследования потерь передачи в многокамерном глушителе [17].Когда анализируемая частота была ниже 500 Гц, кривая потерь передачи также была очень гладкой. Основываясь на расчетной гидродинамике, Мидделберг проанализировал потери при передаче глушителя с несколькими камерами расширения [18] и сравнил результаты расчетов с результатами экспериментов. Кривые как для экспериментальных, так и для численных результатов были очень гладкими. Следовательно, потери передачи глушителя в этой статье также были разумными, а кривые не обрабатывались никаким инструментом.

5. Оптимизация конструкции глушителей

Как было проанализировано на основании экспериментальных данных и потерь при передаче, грохот в основном вызван недостаточной звукоизоляционной способностью выхлопной системы на низких частотах, и, особенно, радиационные шумы второго и четвертого порядка в выхлопной трубе выше. На основе оригинальных глушителей конструкция была улучшена для решения вышеуказанных проблем.

Было два улучшения глушителей. Во-первых, конструкция глушителя была изменена с трехкамерной на четырехкамерную, а с использованием четвертой камеры был разработан низкочастотный резонатор.Внутренняя конструкция улучшенного глушителя представлена ​​на рис. 13, а 2, 3 и 4 перегородки показаны на рис. 14. Три внутренние перегородки были установлены спереди назад внутри глушителя, а внутренние были разделены на четыре части. камеры, включая 9, 10, 11 и 12, соответственно слева направо. На переднем конце глушителей была впускная труба 6, а на заднем конце — выпускная труба 7. Вставная труба 8 была закреплена на перегородке 2, 3 и 4 точечной сваркой. Передний конец трубы был соединен с камерой 9, а задний конец — с камерой 12.В качестве герметичной камеры камера 12 и вставная труба 8 образуют камеру низкочастотного резонатора.

Рис.13. Внутреннее устройство улучшенного глушителя

Рис.14. Вид в разрезе перегородки

a) Перегородка 2 и 3

б) Перегородка 4

Некоторые параметры улучшенного глушителя не могут быть оптимальными.В результате потери передачи улучшенного глушителя могут быть не самыми большими, поэтому параметры улучшенного глушителя следует дополнительно оптимизировать.

Потери при передаче были одним из важных показателей для оценки характеристик глушителя, и при проектировании конструкции следует также учитывать требование легкости. Поэтому в этой статье максимизация средних потерь при передаче и минимизация массы рассматривались как цель оптимизации глушителя.Выбранные параметры оптимизации были следующими: радиус r1 входной трубы, радиус r2 средней трубы, радиус r3 выходной трубы, радиус r4 расширительной камеры, длина l1 камеры 9, длина l2. камеры 10, длины l3 камеры 11 и длины l4 камеры 12. Во время процесса оптимизации необходимо убедиться, что общий внешний размер глушителя не увеличился, иначе глушитель нельзя было установить так, чтобы днище автомобиля.Поэтому предотвращение увеличения общего внешнего размера глушителя считалось ограничением. Математическое выражение оптимизации было показано следующим образом:

(17)

Мин. (Вт), Макс. (TL)
20≤r1≤30,
10≤r2≤20,
20≤r3≤30,
30≤r4≤98,
20≤l1≤100,
20≤l2≤100 ,
20≤l3≤100,
20≤l4≤100,
l1 + l2 + l3 + l4≤300.

В формуле. (17) W — полная масса глушителя. TL — это средние потери при передаче глушителя.

Рис.15. Поток улучшенного генетического алгоритма

На основании приведенного выше анализа можно сделать вывод, что оптимизация глушителей была сложной задачей, включающей несколько целей и множество переменных. И генетический алгоритм широко применяется для решения многоцелевой оптимизации. Поэтому в данной статье для оптимизации конструкции глушителя был выбран генетический алгоритм. Согласно большому количеству опубликованных статей, традиционный генетический алгоритм может легко получить локально оптимальное решение в процессе поиска.То есть это приведет к преждевременной конвергенции и быстрому достижению 90% оптимального решения. Чтобы избежать локально оптимального решения, необходимо было расширить пространство поиска и увеличить разнообразие населения.

Метод случайного испытания, также называемый методом Монте-Карло, использует относительно меньше памяти и обладает хорошими статистическими характеристиками. В статье, при сохранении скорости кроссовера и скорости мутаций, был принят метод случайных проб, чтобы предотвратить локальную конвергенцию.Другими словами, когда никаких изменений не произошло с оптимальными индивидами в непрерывных n поколениях, это показало, что алгоритм обнаружил локальный экстремум, и необходимо принять некоторые меры для решения этой проблемы. Когда возникла вышеупомянутая проблема, следует провести случайные пробные операции с популяцией, а к развивающейся популяции следует применить большое возмущение, чтобы алгоритм мог избавиться от локально оптимальных точек и начать новый поиск. Конкретные операции заключались в следующем: сохранить только оптимальные значения и восстановить остальные особи.Цель случайных пробных операций заключалась в том, чтобы как можно быстрее избавиться от состояния медленной эволюции и начать новый поиск, а не вырождать популяцию. Последовательность усовершенствованного генетического алгоритма, включающего метод случайного испытания, показана на рис. 15. В процессе оптимизации исходная популяция составляла 50, частота кроссовера составляла 0,95, а частота мутаций составляла 0,05. Как значение приспособленности генетического алгоритма изменяется с числом эволюционных поколений, показано на рис.16.

Рис. 16. Значение приспособленности меняется с эволюционным поколением.

Рис.17. Сравнение потерь передачи до и после оптимизации

Согласно рис. 16, целевая функция могла иметь стабильные значения после почти 80 поколений. Конструктивные параметры оптимизированного глушителя приведены в таблице 1. Согласно таблице 1 общая масса глушителя уменьшена на 0.9 кг, а средние потери передачи были увеличены на 3,2 дБ, что дало очевидный эффект оптимизации. На основании этих параметров глушитель был смоделирован заново, в результате чего была получена четырехкамерная конструкция глушителя, показанная на рис. 13 в статье. Затем был использован метод конечных элементов для расчета потерь передачи глушителя, и расчетные значения были сопоставлены со значениями исходной конструкции, как показано на рис. 17.

Рис.18. Сравнение уровня звукового давления правого уха водителя до и после оптимизации

a) Общие уровни звукового давления до и после оптимизации

б) Уровни звукового давления второго порядка до и после оптимизации

c) Уровни звукового давления ниже четвертого порядка до и после оптимизации

Как видно из рис.17, потери передачи оптимизированного глушителя резко увеличиваются на низкой частоте. Для дальнейшей проверки фактического эффекта оптимизированного глушителя был изготовлен образец. После субъективной оценки рев глушителя выхлопа исчез при 1400 об / мин, и эксперимент с транспортным средством также проводился в полубезэховой камере, который сравнивался с исходным результатом. На рис. 18 сравнивается звуковое давление в правом ухе водителя при второй передаче и при полном разгоне до и после оптимизации.На рис. 19 также сравнивались звуковые давления в положениях выхлопной трубы на второй передаче и при полном разгоне до и после оптимизации.

Как видно из рис. 18, уровень звукового давления на ухе водителя значительно улучшился около 1400 об / мин, а грохот исчез. Кроме того, из рисунка 19 видно, что радиационный шум в положении выхлопной трубы снижается на 3-7 дБ при 1000–2000 об / мин, шум второго порядка снижается на 5–12 дБ при 1200 об / мин. -2350 об / мин, а шум четвертого порядка снижается на 3–7 дБ при 1000–1500 об / мин.Из этих результатов видно, что оптимизированный глушитель в этой статье возможен.

Рис.19. Сравнение уровня звукового давления положения выхлопной трубы до и после оптимизации

a) Общие уровни звукового давления до и после оптимизации

б) Уровни звукового давления второго порядка до и после оптимизации

c) Уровни звукового давления ниже четвертого порядка до и после оптимизации

Таблица 1. Сравнение всех параметров до и после оптимизации

Переменные

Оригинал

Оптимизировано

Радиус входной трубы r1 / мм

30

28

Радиус средней трубы r2 / мм

20

13

Радиус выпускной трубы r3 / мм

30

27

Радиус расширительной камеры r4 / мм

98

85

Длина камеры 1 л1 / мм

75

50

Длина камеры 2 l2 / мм

75

92

Длина камеры 3 л3 / мм

75

41

Длина камеры 4 л4 / мм

75

85

Общая длина л / мм

300

268

Общая масса Вт / кг

5.2

4,3

Средние потери передачи TL / дБ

39,1

42,3

6. Выводы

1) Общий уровень звукового давления правого уха водителя проверяется и сравнивается с уровнем звукового давления второго и четвертого порядка.Как видно из результата, рев при 1400 об / мин в основном вызван чрезмерным шумом второго порядка.

2) Безэховая коробка помещается в конец выхлопной трубы транспортного средства, и затем проверяется соответствующий шум, который сравнивается с предыдущими результатами. Указывается, что после установки безэховой коробки пиковый шум при 1400 об / мин был значительно улучшен, что дополнительно показывает, что рев в этом положении вызван звукоизоляционной способностью выхлопной системы на низкой частоте.

3) Метод конечных элементов применяется для расчета потерь передачи глушителей, результаты которого сравниваются с экспериментальным результатом. Они согласуются друг с другом, и это показывает, что численная модель потерь передачи надежна и может быть использована для последующего анализа.

4) На основе оригинального глушителя улучшена его конструкция, но параметры улучшенного глушителя не могут быть оптимальными. В результате улучшенный генетический алгоритм принят для оптимизации улучшенной структуры.Затем вычислительная модель применяется для расчета потерь при передаче глушителей, результаты которых, наконец, сравниваются с исходными результатами. Как показывают результаты, потери передачи оптимизированной конструкции были значительно увеличены.

5) Чтобы проверить действительные эффекты оптимизированной структуры, для реальных экспериментов производятся образцы, результат которых затем сравнивается с исходным значением. Пиковые шумы как в правом ухе водителя, так и в выхлопной трубе были значительно уменьшены, что свидетельствует о том, что предложенная в документе оптимизация является реальной и эффективной.

Что делает мой глушитель?

  • 15 декабря 2019 г.
  • Автор Park Muffler
  • В блоге, Глушители

Многие люди не знают, что именно делает их глушитель, пока он не сломается. Не пропустите признаки сломанного глушителя. Основная задача глушителя — снизить уровень шума двигателя. Когда они сломаются, вы заметите, что ваш автомобиль становится очень громким, а соседи очень недовольны!

Однако, помимо соблюдения законов о шумовом загрязнении, современные глушители также предназначены для повышения производительности вашего автомобиля и защиты вас и пассажиров в вашем автомобиле.Читайте дальше, чтобы узнать больше о том, как работают глушители и что они делают с вашим автомобилем.

Как работает глушитель?

Внутренняя часть глушителя состоит из набора перфорированных трубок. Эти трубки предназначены для отражения звуковых волн, создаваемых двигателем, что сводит к минимуму количество шума, исходящего от вашего автомобиля. Трубки также служат для удаления выхлопных газов из двигателя, что, в свою очередь, помогает повысить производительность автомобиля и направить газы изнутри автомобиля.

Этот выхлоп вместе со звуковыми волнами попадает в глушитель через центральную трубу. Затем они отталкиваются от задней стенки глушителя и вдавливаются в основной корпус глушителя.

Попадая в основной корпус глушителя, они проходят через ряд отверстий, через которые они проходят через последнюю камеру и выходят из выпускной трубы.

Контроль шума

Когда ваш двигатель работает, он издает тысячи небольших звуковых всплесков при выпуске газа под высоким давлением. Эти звуки распространяются по выхлопной трубе, поэтому вы можете представить, насколько они были бы громкими, если бы не было компонента, заглушающего звук.

Но глушители делают больше, чем просто приглушают звук. Самое крутое в вашем глушителе — это то, что он предназначен для «настройки» звука, производимого вашим двигателем. Это означает, что разные типы глушителей будут издавать разные звуки. Вы можете сделать свой автомобиль как можно более тихим или издать глубокий рычащий звук. Независимо от ваших желаний и потребностей, для вас найдется производительный глушитель!

Повышение производительности

Как упоминалось выше, глушители не просто настраивают и приглушают звуки.Они также используются для увеличения производительности вашего автомобиля. Как они это делают?

Чем быстрее ваш двигатель избавляется от выхлопных газов, тем быстрее он поглощает кислород и генерирует больше мощности. По этому стандарту вы можете подумать, что глушитель — это не лучший вариант — почему бы не избавиться от посредников, когда дело доходит до выпуска выхлопных газов и забора воздуха? К сожалению, это может принести вам крупный штраф за нарушение правил шума от местной полиции, поскольку уровень шума строго контролируется.

К счастью, глушители предназначены для выполнения этой функции в интересах производительности вашего автомобиля.Специалисты по глушителям создали множество эффективных конструкций, которые минимизируют время выхода выхлопных газов, при этом соблюдая нормы шума.

Защита от дыма

Выхлопная система вашего автомобиля предназначена для отвода дыма из передней части автомобиля в заднюю. Глушитель фильтрует эти пары в атмосферу.

Если в глушителе есть трещина или отверстие, пары могут попасть в салон автомобиля. Выхлопные газы содержат окись углерода и другие очень опасные химические вещества и токсины.Со временем это может нанести серьезный вред вам и вашим пассажирам.

Что вызывает поломку глушителя?

Как и любой компонент вашего автомобиля, глушители со временем могут выйти из строя — как внутри, так и снаружи. Насколько быстро это произойдет, полностью зависит от возраста и использования транспортного средства, а также от того, где вы живете.

Самая частая причина поломки или образования дырок в глушителях — это внешняя ржавчина. Ржавчина образуется снаружи глушителя и разъедает его структуру.Это может быть вызвано воздействием таких веществ, как соль, которая часто используется на дорогах в зимнее время.

Ржавчина может также образовываться внутри глушителя из-за конденсации. Если вы когда-нибудь видели, как капли воды падают из выхлопной трубы при первом запуске автомобиля, это совершенно нормально. Они являются побочным продуктом конденсации, которая возникает, когда выхлопная труба нагревается, а затем остывает. Однако этот конденсат и вода никогда полностью не стекают из глушителя и могут вызвать внутреннюю ржавчину.

Если вы заметили устойчивую струю воды, выходящую из воды, а не только капли, это может означать, что внутри глушителя имеется чрезмерная ржавчина или гниль.

Ремонт глушителя или замена

Если у вас возникнут проблемы с глушителем, будь то отверстие в глушителе или другие проблемы в выхлопной системе, важно немедленно устранить проблему. В противном случае вы получаете либо вышеупомянутый штраф за нарушение шума, либо снижение эффективности топливной системы вашего автомобиля.

В любой ситуации всегда есть возможность отремонтировать сломанный глушитель, но могут возникнуть ситуации, когда потребуется его замена. Наши опытные специалисты в Park Muffler будут рады помочь вам принять оптимальные решения для глушителя и выхлопной системы вашего автомобиля.

Многие автомастерские посоветуют полностью заменить глушитель целиком, когда он нуждается в ремонте. Наша команда специализируется на глушителях, и у нас есть знания и опыт для выполнения различных ремонтов глушителей, от простых до сложных!

Используя специальные методы гибки труб, сварки и других методов, мы можем отремонтировать глушители — и ремонт стоит намного меньше, чем замена.

Ищете новый глушитель?

Если вы ищете новый глушитель для улучшения характеристик своего автомобиля, поговорите со специалистами Park Muffler. Наша команда подберет для вас идеальный глушитель, соответствующий характеристикам и звуку вашего автомобиля.

Победитель 2006 г. — Tenneco Automotive Inc. — Низкозатратный глушитель с низким весом

2006 г. — Победитель премии PACE
Tenneco Automotive Inc.

Что: Низкозатратный глушитель с низким весом

Цитата судьи:

Назначение глушителя автомобиля состоит в том, чтобы быть частью системы, которая передает горячие выхлопные газы из коллектора двигателя в точку выпуска, при этом контролируя шум, исходящий от сгорания и вытеснения горячих газов из двигателя, и подавляя структурные колебания, выраженные как шум.Из-за этих функций глушители имели значительную конструкционную массу, а также стоимость.

Tenneco Automotive изменила определение не того, что делают глушители, а того, как они могут быть спроектированы и сконструированы для этого. В результате получился инновационный недорогой глушитель с низким весом. Задача, которую они взяли на себя, заключалась в разработке и производстве глушителя, который был бы легче, дешевле и с желаемыми (такими же хорошими или лучшими) акустическими свойствами.

Глушители исторически изготавливались с ламинированной гильзой 1 шт.Сталь толщиной 2 мм, с хорошей автономной структурной прочностью, чтобы удерживать и обеспечивать приемлемый отвод тепла и акустику. Благодаря этим ограничениям, глушители были уменьшены в весе на 20% за счет экономии здесь и там за последние пять лет, разработанных различными поставщиками. Стоимость не сильно снизилась, отчасти из-за материальных затрат (толстостенная многослойная сталь).

Недорогой легкий глушитель Tenneco был разработан путем интенсивного использования компьютерной инженерии Tenneco (CAE), в результате чего они смогли разработать одинарный глушитель с тонкими стенками (0.7 мм) с рисунком валика, позволяющим производить сварку в процессе, и с бескомпромиссной и даже настраиваемой акустикой.

Tenneco интегрировала глушитель в днище автомобиля, чтобы избежать структурного шума, тем самым уменьшив также выделенное пространство под днищем. Кроме того, Tenneco может использовать свой CAE для преодоления шума, связанного с одиночными тонкими стенками, и для настройки акустики глушителя, используя нерегулярные геометрические узоры тиснения в топологии поверхности. Все усилия Tenneco очень умело приводят к созданию глушителя, который стоит меньше, и снижает вес глушителя еще на 20% с помощью всего лишь одного этого нововведения.

Недорогая и легкая технология глушителя Tenneco Automotive вскоре будет применена General Motors на одной из своих глобальных транспортных платформ.

3 лучших выхлопных резонатора (2020)

Преимущества выхлопных резонаторов

  • Повышенная производительность двигателя. Качественный выхлопной резонатор улучшает характеристики двигателя вашего автомобиля за счет минимизации трения внутри двигателя. Он также снижает противодавление в двигателе, делая вождение вашего автомобиля плавным.Резонатор позволяет автомобилю получить улучшенные характеристики за счет совместной работы с каталитическими нейтрализаторами в выхлопной системе, чтобы уменьшить громкий шум двигателя.
  • Предлагает опору для глушителя. Основное преимущество установки выхлопного резонатора на вашем автомобиле заключается в том, что он поддерживает глушитель и гармонизирует звук, исходящий из двигателя вашего автомобиля. Он работает вместе с глушителем, чтобы уменьшить шум, исходящий из выхлопной трубы.
  • Снижение шума. Причина для покупки резонатора и его установки в двигателе автомобиля заключается в том, что вы хотите изменить громкий звук двигателя. Выхлопной резонатор снижает громкий и раздражающий звук двигателя, когда автомобиль движется на высоких скоростях. Таким образом, вы можете с комфортом слушать музыку во время вождения. Это также снижает уровень шума, который ваш автомобиль может причинять пассажирам и другим автомобилистам.

Типы резонаторов выхлопных газов

Chambered или Helmholz

Этот тип резонатора работает с использованием полостей разного размера для подавления звуковых волн от двигателя транспортного средства и создания прохладного шума.В выхлопном резонаторе используются металлические пластины, также известные как перегородки, и одна камера, чтобы звук, исходящий из автомобильного двигателя, был приемлем для ваших ушей. Эти резонаторы предназначены для гашения звуковых волн, которые штатный глушитель, установленный в двигателе, не позволяет уйти. Они работают по-разному в зависимости от марки глушителя и двигателя.

Диссипативный

Это наиболее распространенный тип выхлопного резонатора. Эти резонаторы поставляются с упаковочным материалом из стекловолокна или металла, который поглощает громкий звук двигателя автомобиля.Уплотнительный материал на резонаторе податливый и мягкий, поэтому поглощает и снижает громкость звука, подавляя звуковые волны. Он бывает двух видов: с решетчатым сердечником и без перфорированного сердечника.

Камера расширения

Это наиболее эффективный и простой выпускной резонатор на рынке. Резонатор представляет собой простую трубку разного диаметра. Часть трубы имеет меньший диаметр по сравнению с другими частями. Когда звуковые волны входят в трубку, они отскакивают и гасятся, тем самым уменьшая громкость, частоту и высоту звука.Таким образом, выхлопная труба вашего автомобиля будет издавать звук с более низким тоном.

Ведущие бренды

Vibrant Performance

Это одна из самых известных компаний-производителей выхлопных резонаторов в автомобильной промышленности. Vibrant Power Inc. была основана в 1985 году и базируется в Канаде. Международная компания завоевала отличную репутацию в области поставки лучших компонентов для контроля вибрации для транспортной и автомобильной промышленности. Некоторые из самых продаваемых продуктов компании включают резонатор Vibrant Bottle Style и резонатор Vibrant Performance 1794 Bottle Style.Вся продукция компании поставляется с гарантией и некоторыми гарантиями качества на запчасти.

Street Legal Performance (SLP)

SLP — еще одна ведущая компания-производитель качественных и доступных по цене выхлопных резонаторов. Компания была основана в 1987 году, ее штаб-квартира находится в Плимуте, штат Мичиган. Компания известна своим широким спектром машин для повышения производительности, таких как выхлопная труба, подвеска, резонаторы выхлопа и обвесы. SLP Performance 31064 Loud Mouth Resonator — один из самых продаваемых продуктов компании.Вся продукция SLP изготовлена ​​из высококачественных и прочных материалов, что делает их значительным вложением средств.

Walker

Walker — семейная компания, предлагающая качественные заменяющие устройства контроля выбросов. Компания накопила более чем вековой опыт производства качественных и доступных по цене выхлопных резонаторов. Он был основан в 1908 году Уильямом Уокером и его семьей и в настоящее время базируется в Монро, штат Мичиган. Некоторые из самых продаваемых выхлопных резонаторов от компании включают Walker 21398 Resonator и Walker 24442 Resonator.Walker предоставляет гарантию и некоторую гарантию качества всем клиентам, покупающим ее продукцию.

Цены на выхлопной резонатор

  • Менее 60 долларов : Это самые доступные выхлопные резонаторы, которые вы можете найти. Они немного меньше по размеру и легче по сравнению с самыми дорогими резонаторами. Эти резонаторы не могут прослужить долго, потому что они могут быть изготовлены из непрочного и очень абразивного материала.
  • Более 60 долларов : Это одни из лучших выхлопных резонаторов, которые вы можете купить для своего автомобиля.Они больше и тяжелее. Кроме того, они отзывчивы, скрипучи и лучше работают, сводя к минимуму громкий звук выхлопа автомобиля.

Основные характеристики

Размер

Выхлопные резонаторы бывают разных диаметров и длин трубок. Выбор подходящего размера будет зависеть от типа выхлопной системы вашего автомобиля. Всегда выбирайте резонатор подходящего размера, совместимого с глушителем вашего автомобиля.

Конструкция

Выхлопной резонатор соединяется с глушителем выхлопной системы через полую трубку.Он имеет такую ​​же структуру, что и акустический резонатор. Он снижает частоту звука двигателя, создавая звук выхлопа, чтобы звук был более терпимым. Вы можете легко улучшить звук двигателя, отрегулировав звук выхлопа.

Performance

Выхлопной резонатор дополняет выхлопную систему вашего автомобиля. Он соединен с выпускным коллектором и каталитическим нейтрализатором через трубку, чтобы обеспечить лучшую производительность. Шум от двигателя транспортного средства обычно проходит через резонирующую камеру.Находясь внутри камеры, возникает интерференция звуковой волны, чтобы уменьшить громкость и высоту звука, выходящего из выхлопа.

Прочие соображения

  • Материал . Материал, из которого изготовлен выхлопной резонатор, играет определенную роль в его долговечности и общих характеристиках. Если в конструкции использован долговечный материал, то резонатор стоит ваших вложений. Материал должен быть отличным звукопоглотителем, чтобы ограничивать звук, исходящий из выхлопной системы.Кроме того, вы можете выбрать резонаторы из нержавеющей стали, потому что они служат дольше и менее устойчивы к коррозии и ржавчине.
  • Установочный комплект. Некоторые выхлопные резонаторы поставляются с полным установочным комплектом, включающим все детали, которые необходимы для его ремонта. При покупке выхлопного резонатора убедитесь, что в нем есть кронштейны, фланцы и другие инструменты, необходимые для его ремонта. Кронштейны избавят вас от необходимости искать совместимые крепления для узла резонатора.
  • Цена . Цена — важнейший показатель качества продукта. Поэтому, покупая выхлопной резонатор, вы хотите выбрать тот, который доступен по цене и стоит ваших вложений. Выбирая выхлопной резонатор исходя из его цены, проверьте наличие гарантии или другой гарантии качества.

Лучшие выхлопные резонаторы Обзоры и рекомендации 2020

Наконечники

  • Выхлопной резонатор — это не то же самое, что глушитель. Он устанавливается перед глушителем и иногда называется предварительным глушителем.Выхлопной резонатор и глушитель работают вместе, но одно не может быть заменено другим.
  • Резонаторный наконечник выхлопной трубы производит больше шума, чем обычный выхлопной патрубок. Если вы не хотите привлекать к себе слишком много внимания, лучше воспользуйтесь обычным наконечником.
  • Некоторые люди используют трубу вместо выхлопного резонатора; однако это может повлиять на противодавление, что может снизить эффективность и вызвать более высокий расход топлива.

Часто задаваемые вопросы

В: Как долго прослужит выхлопной резонатор?

A: Это зависит от продукта.Некоторые из них лучше по качеству и прослужат дольше. Более дешевые вещи быстрее ломаются, со временем обесцвечиваются или ржавеют. Хороший выхлопной резонатор должен прослужить долгие годы.

Q: Что может повлиять на работу выхлопного резонатора?

A: Выхлопной резонатор прикреплен к двигателю вашего автомобиля, поэтому он подвергается сильной вибрации. Он также выдерживает много тепла и регулярно сталкивается с грязью, грязью и другим дорожным мусором.

Q: Как установить выхлопной резонатор?

A: Некоторые выхлопные резонаторы имеют точки крепления, что упрощает их установку.Остальные необходимо приварить к автомобилю, что может потребовать профессиональной помощи.

Заключительные мысли

Мы выбрали лучший выхлопной резонатор — Vibrant 2.5 «Ultra Quiet Resonator. Он хорошо сделан, удаляет почти все ваши выхлопные газы, но при этом способствует потоку выхлопных газов.

Для более экономичного варианта, рассмотрите резонансный глушитель DC Sports EX-1013.

различных типов глушителей — Hurricane Automotive

Home » Различные типы глушителей

Глушитель поглощает шум при прохождении газа через выхлопную систему.Уровень шума, который вы слышите из автомобиля, зависит от типа глушителя, размера глушителя и двигателя. Hurricane Automotive предлагает широкий выбор выхлопных газов Black Widow. Они созданы для увеличения мощности вашего двигателя без громких резких звуков. Все они изготовлены из нержавеющей стали, что не вызывает ограничения потока. Все глушители Black Widow универсальны, поэтому подходят практически к любой выхлопной системе.

Под патрон

Глушитель с камерами представляет собой прямоугольную конструкцию с зигзагообразным узором внутри.Это позволяет звуку отражаться от стенок камеры перед выходом через выхлопную трубу. Глушитель с камерами имеет на каждом конце отверстия для легкого входа и выхода газов. Эти типы глушителей не имеют изоляции, поэтому они не так легко поглощают звук, как другие.

Стеклянный пакет

Глушитель стеклопакета имеет более трубчатую форму. Такая форма позволяет газам проходить через центр глушителя. Есть небольшая изоляция, которая позволяет немного поглощать звук.Хотя звук проходит прямо, глушитель из стеклопакета может быть одним из самых громких типов глушителей. Это потому, что звук проходит прямо и не задерживается в глушителе надолго.

Проточный

Проточный глушитель представляет собой комбинацию стеклопакета и глушителя с камерами. Он имеет прямоугольную форму камеры, но имеет трубку, которая проходит сквозь нее, как глушитель из стеклопакета. Трубка, проходящая через прямоугольную форму, окружена изоляцией.Трубка позволяет газам проходить прямо, как стеклянный пакет, но дополнительная изоляция обеспечивает некоторое шумоподавление.

Глушители Black Widow из нержавеющей стали бывают различных трубчатых и прямоугольных форм. Различные размеры и изоляция обеспечивают разный звук для каждого глушителя. Для получения дополнительной информации и подробностей посетите Hurricane Automotive, чтобы узнать обо всех ваших потребностях в глушителях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *