Схема импульсной зарядки автомобильного аккумулятора: Мощное импульсное зарядное устройство для автомобильного аккумулятора

Содержание

Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.

РадиоКот >Схемы >Питание >Зарядные устройства >

Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.


В инструкциях по эксплуатации к первым отечественным автомобилям было написано, что аккумулятор нельзя эксплуатировать летом (начинать заводить автомобиль и двигаться) при заряде менее 50%, и зимой менее 75%. Проанализируем, почему аккумулятор в некоторых случаях не будет успевать полностью заряжаться. Например, на улице зима, вам нужно за день съездить в 3-4 места, на улице -25, двигатель остывает уже через 15 мин, а перерывы межу поездками 1-3 часа. Уже темно и вы пользуетесь фарами, а также подогревом сиденья и стекол. В результате все это дело потребляет не менее 400- 500 ватт. Генератор дает ватт 800 и у вас остается ватт 300 (в теории) на зарядку аккумулятора. 300 ватт при 14 В в бортовой сети автомобиля это примерно 20 А. Так вот полностью разряженный аккумулятор с емкостью, например, в 52 Ач даже в теории полностью может зарядиться не быстрее чем за 3,5 часа (70 Ач химической емкости 3,5 часа * 20 А). А реально ток заряда никогда не достигнет значения 20 А, в первые минуты зарядка будет происходить током 10-15А, а далее 3-5А. В результате аккумулятор не успевает зарядиться по пути до ближайшего места стоянки. Конечно, он не полностью разряжен. Давайте посчитаем, насколько он разряжается стартером в зимнее время. При температуре -25 общее время работы стартера составит от 30 сек до 5 мин, например ваш стартер в общей сложности проработал 3 мин в день. Стартер потребляет при такой температуре двигателя в среднем 250А (при пуске может и 900А), при этом за 3 мин расходуется 360 часа * 250А = 12,5 Ач. Это много или мало? Как отмечалось выше, у аккумулятора есть химическая емкость и полезная. Химическая — это та, что запасается в химической реакции, а полезная, та, что расходуется на нагрузку. Естественно, что часть энергии при разряде в виде тепла теряется на самом аккумуляторе и полезная емкость зависит от нагрузки и температуры. Например, разряжаете аккумулятор в течении 10 часов при +25 градусах — его емкость становится 52 Ач (а химическая около 70), если разряжаете за час в тепле — его емкость падает до 35 Ач, остальные 35, от химической, идут на нагрев самого аккумулятора. Если же разряд идет при -25, то сопротивление электролита возрастает, и на самом аккумуляторе тепла теряется еще больше. Реальная емкость на морозе может составить 60% от номинальной, т.е при стартерном режиме 35*0,6= 21 Ач. Так много ли потраченных 12,5 Ач для работы стартера за день? В этой ситуации самым не приятным является то, что химическая емкость не меняется. И для того чтобы зарядить аккумулятор надо потратить в любой ситуации 70 Ач. Покрутили 3 минуты стартер, потратили 12.5 Ач (60 % емкости), вернуть придется 40 Ач. Если же вы не ездите по 4 часа до гаража, не стоите с работающем двигателем в морозы во многочасовых пробках, то ваш генератор не в состоянии обеспечить полный заряд аккумулятора, поэтому его и необходимо периодически дозаряжать.

Конечное напряжение заряда при температуре 20 градусов Цельсия равно 2.25-2.3 вольта на элемент батареи. Для батареи с номинальным напряжением 12 В (6 элементов) конечное напряжение заряда равно 13.5-13.8 В. Если батарея эксплуатируется при других температурах, то для увеличения ресурса батарей рекомендуется уменьшать конечное напряжение заряда до 2.2-2.25 В/эл при температуре 40 градусов и увеличивать напряжение до 2.35-2.4 В при температуре 0 градусов. Применение такой температурной компенсации зарядного напряжения позволяет увеличить ресурс батареи при 40 градусах Цельсия на 15 %. Но чтобы аккумулятор заряжался нужно выходное напряжение зарядного поднять хотя бы на один вольт выше максимального напряжения заряженного аккумулятора (напряжение примерно 15,8 вольта). Для полного заряда разряженной батареи рекомендуется проводить заряд в течение 24 часов. Если необходим более быстрый (в течение 8-10 часов) заряд батареи в случае циклического режима эксплуатации, конечное напряжение заряда увеличивают до 2.4-2.48 В/эл (при 20 градусах Цельсия) и обязательно ограничивают время заряда в соответствии с остаточным зарядом батареи перед зарядкой. Следует отметить, что потенциал электрохимической поляризации свинца примерно при 65С падает до нуля, и выше этой температуры аккумулятор не может существовать, т.е. его невозможно будет зарядить, так как на «-» будет идти исключительно побочная реакция, при которой будет восстанавливаться только водород, да и сам свинец начнет реагировать с серной кислотой. Подача на аккумулятор при заряде напряжения ЭДС в 2В + потенциал электрохимической поляризации 1,3В (примерно 3, 3В на ячейку) также ведет к полному смещению процесса к побочным реакциям. При эксплуатации для сведения к минимуму побочного газообразования и скорости коррозии положительных пластин подаваемое напряжения на элемент не следует делать выше 2,4В на ячейку. Если точнее, то максимальное напряжение заряда 2.33 В на банку при +25С. Температурный коэффициент 0,002 Вград. Т.е. зимой при -25 это будет составлять на каждую банку плюс 50град.*0.002 Вград = 0.1 В . Батарею из 6 банок летом надо заряжать напряжением не выше, чем 2,33*6=13,98 В, а зимой (2,33+0,1)*6= 14,58В. При этом, ни какого специального ограничения тока иили времени заряда не требуется. Ток будет ограничиваться естественным образом, за счет сопротивления проводников и переходного сопротивления на клеммах. А жестко заданное напряжение не приведет к закипанию аккумулятора и не создаст условий для повышенной коррозии положительных пластин. Фактически это будет эквивалентно заряду аккумулятора генератором в бортовой сети. И теперь самое важное, на что никогда не акцентируется внимание. Все эти напряжения являются максимальными (пиковыми), и справедливы для зарядных устройств с ограничением максимального напряжения, т.е. стабилизированных источников питания. Многие зарядные устройства не ограничивают напряжение, а регулируют мощность, отдаваемую в батарею. Действующее значение напряжение, которое будет показывать вольтметр может быть и меньше указанных 14 В, но аккумулятор будет кипеть и плохо заряжаться. Потому что часть времени подводимое напряжение будет превышать норму в 14 В, и большая часть подводимой мощности уйдет на электролиз воды и разрушение анода электрода, а оставшуюся часть периода напряжение будет ниже 14 В, ток будет равен 0. Вольтметр на зарядном устройстве может показывать и 11 В, но аккумулятор при этом будет кипеть и едва заряжаться. В нашем зарядном устройстве аккумулятор почти не кипит и хорошо заряжается. Огромный плюс зарядных устройств с ограничением пиковых напряжений — это возможность ставить аккумулятор на заряд не отключая клеммы аккумулятора от бортовой сети. При этом электроника не сбрасывается, крепления клемм не снашиваются, а времени на периодический подзаряд уходит минимум (открыл капот, поставил на заряд минут на 10-15). Зарядка автомобильного аккумулятора при постоянном напряжении: при этом методе, в течение всего времени заряда напряжение зарядного устройства остается постоянным. Зарядный ток убывает в ходе заряда по причине повышения внутреннего сопротивления батареи. В первый момент после включения, сила зарядного тока определяется следующими факторами: выходным напряжением источника питания, уровнем заряженности батареи и числом последовательно включенных батарей, а также температурой электролита батарей. Сила зарядного тока в первоначальный момент заряда может достигать (1,0-1,5)С20. Для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий. Несмотря на большие токи в первоначальный момент зарядного процесса, общая длительность полного заряда аккумуляторных батарей приблизительно соответствует режиму при постоянстве тока. Дело в том, что завершающий этап заряда при постоянстве напряжения происходит при достаточно малой силе тока. Однако, заряд по такой методике в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить пуск двигателя. Кроме того, сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. При этом реакция газообразования в аккумуляторе еще не возможна. Итак, зарядка при постоянстве напряжения позволяет ускорять процесс заряда аккумуляторов при подготовке к использованию.

Различных зарядных устройств на основе блока питания гуляет по просторам интернета немало. Вот решил поведать и я об истории развития своей схемы зарядок. Схема создавалась для того, чтобы наш котомобиль в морозы зимой все же продолжал ездить на авто, а собрать мог каждый желающий, мало-мальски радиокот. Основной упор в схемотехнике зарядных устройств -простота переделки. В наш век «китайтизации» электроники и электронной промышленности зачастую проще, дешевле и доступнее взять готовый AT/ATX блок питания и переделать его под любые свои нужды, нежели купить отдельно силовой трансформатор, диоды на мост, тиристор и прочие детали. Сначала поведаю о самом простом (ну уже проще просто не бывает!!!) и надежном зарядном на основе AT блока питания, без индикатора тока (хотя амперметр никто не мешает поставить).

Ну, вот блоков для переделки вы уже поднасобирали, тогда начнем-с пожалуй:


Подходим поближе и отыскиваем блоки АТ


Эх, наконец-то раздобыли. Разбираем и смотрим на плату. Для нашей схемы берем самого распространенного китайца, собранного на TL494. Его моем, чистим, сушим и смазываем кулер.

Надо сказать небольшое отступление. О качестве комплектующих для АТ и АТХ блоков. Хочу сказать о важном элементе схемы — фильтрующий конденсатор 310 вольт в первичной цепи. От него зависит не только такой параметр как пульсации выходного напряжения с частотой сети под большой нагрузкой, но и, что очень важно — нагрев самих выходных ключей. Если емкости не хватает, то им приходится работать до 35% своего времени на большей ширине импульса, чем при нормальной емкости, так как среднее средневыпрямленное напряжение уже не 310 вольт, а 250 — 260 вольт напряжение, за счет пульсаций. Контроллеру приходится отрабатывать такие провалы, увеличивая ширину и время открытого состояния транзистора. Следовательно, им приходится работать на большем токе, чем при достаточной емкости. Больше ток — больше нагрев — меньше кпд. (Он и так небольшой 60 — 75% в зависимости от блока). Проведя некоторые измерения более древних и очень старых АТ блоков питания и более новых АТХ выяснилось — китайцы совсем совесть потеряли. Если раньше ставили конденсаторы — как на нем написано,


так оно и есть. То теперь 50% допуск всегда в минус. Перебрал сотни блоков: Написано 470МКФ, выпаиваешь замеряешь — 300 -330МКФ, даже новый конденсатор — та же история.


Ну, да и ладно, пусть пишут что хотят: Ну, а нам необходимо заменить в АТ блоке, на основе которого мы будем строить зарядку 200МКФ на эти самые 330МКФ, или еще лучше 470МКФ (настоящих 470). Транзисторам легче будет.

С дросселями та же история. АТ дроссель:


АТХ дроссель:


Не домотаны, и кольцо меньше… Следствием уменьшения индуктивности дросселя групповой стабилизации будет акустический свист на малых токах (1-2 ампера). Индуктивность этого дросселя рассчитывается, исходя из режима непрерывности тока через него при минимальных нагрузках. При включении блока, он сразу выходит на мощность не менее 150Вт (зависит от компьютера). Через дроссель протекают определённые токи, не менее какой то величины. Дроссель можно рассчитать на это минимальное значение тока, но тогда, при включении без нагрузки, ток через дроссель станет прерывистым, что повлечёт за собой некоторые неприятности… Схема ШИМ регулирования рассчитана для случая непрерывности тока, по этому, при прерывистом токе, регулирование будет сбиваться, дроссель будет петь, напряжения на выходах будут прыгать, вызывая дополнительные токи перезарядки электролитических конденсаторов… Конечно, в данном случае нам на помощь придет цепь RC коррекции обратной связи (некоторые расчеты ниже), но притуплять скорость реакции на изменение напряжения бесконечно нельзя, В какой-то момент TL494 при КЗ просто не успеет снизить ширину импульса и транзисторы выйдут из строя. Этот процесс достаточно быстрый. Поэтому с этим нужно быть осторожнее. Ну ладно, это было лирическое отступление. Продолжим с зарядным устройством.


Схема с мягкой характеристикой зарядного тока.


Плата стандартного АТ блока. Смотрим на схему, что надо выпаять (а выпаять надо много-много лишнего), а что запаять, чтобы получить самую простую зарядку для аккума. Схема взята стандартная, стандартного блока АТ и номиналы уже установленных элементов могут существенно отличаться от ваших. Менять их на указанные на схеме НЕ НАДО! Выпаиваем только ставшие ненужными защиты от перенапряжения, канал 5 вольт, канал -12 вольт. В общем, согласно схеме, оставляем следующее.


В итоге чтобы получить полноценную, регулируемую зарядку на 10 ампер и 15,8в с управляемым от тока нагрузки вентилятором, надо добавить всего восемь деталек!!! А именно: заменить два электролита, добавить шунт очень приближенного сопротивления 0,01ома -0,08 ома (например, три сантиметра шунта с китайского мультика — работает отлично). Фото исходного шунта (Авторский донор снят с советской Цэшки):


Резистор на 120ом, на 3,9к, и примерно 18к, переменный резистор на 10к, конденсатор на 10 нано и перевернуть обмотку на дросселе по каналу -5 вольта для вентилятора. Только не забудьте, что вентилятор теперь подключать надо так: красный на корпус, а черный на -5:.-12в. Шунт припаиваем в разрыв косички с силового трансформатора. Когда будете настраивать резистор на 3,9к то его сопротивление подберите по току заряда 10 ампер на реальном аккумуляторе. Вы не поверите — это всё! Это просто небывалая простота переделки практически уже металлолома во вполне достойную вещь! Если диоды по каналу +12в у Вас изначально стояли FR302, то надо заменить на более мощные, например выпаять из более современного ATX блока питания. Причем короткого замыкания он не боится — входит в ограничение тока. А вот переполюсовка подключения к аккумулятору приведет к большому ба-баху! Про «НОУ-ХАУ», уникальную защиту от перегрузки и короткого замыкания, в конце статьи. Цветными кружочками и линиями обозначены добавленные дополнительные элементы.


Настройка: Все включения до полной настройки проводить включая в сеть только последовательно с лампочкой накаливания 60 ватт. Проверяем монтаж.

Настройка канала напряжения. Подключаем крокодилами мультиметр в режиме измерения напряжении на диапазоне до 200вольт. Включаем в сеть. Напряжение на выходе должно быть в пределах 16 вольт плюс/минус 4 вольта. Если что-то около 5 вольт, значит забыли заменить резистор в цепи контроля напряжения (1 вывод TL494) на 18к. Если около 23-25в, и постепенно без нагрузки нагреваются выходные ключи, то значит в цепи контроля напряжения (1 вывод TL494) обрыв или сопротивление 18к слишком большое, и блок вышел на полную ширину импульса и все равно не может набрать напряжение, для включения обратной связи. Настраиваем подбором этого резистора на напряжение примерно 15,8 — 16,2 вольта. Если вы выставите 14,4 в то акум через примерно 1 час перестанет у вас заряжаться вообще (проверено многократно на разных аккумуляторах).

Настройка канала тока. Резистор включенный последовательно с регулятором тока временно меняем на подстроечник 22к выставляем его в положение минимального сопротивления. Подключаем крокодилами мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 1 до 4 ампер то все нормально. Выставляем переменный резистор в режим максимального сопротивления, а подстроечным резистором настраиваем ток 15 -16 ампер. Иногда лампочка не дает так настроить, поэтому настройте примерно такой ток. Теперь подключив на выход разряженный аккумулятор и амперметр последовательно, убираем лампочку и включаем в сеть. Подстроечным резистором подстраиваем более точно ток, но уже 10 ампер. Затем подстроечник выпаиваем, меряем и впаиваем постоянный резистор такого же сопротивления. Вентилятор охлаждения должен вращаться с оборотами пропорционально току. Если на максимальном токе или коротком обороты слишком велики (напряжение выше 20 вольт), то необходимо отмотать витков 10 с обмотки минус 5 вольт канала питания вентилятора Напряжение на вентиляторе при подобранных витках должно быть от 6 вольт до 17 вольт. Все, на этом настройка закончена.

В итоге на выходе сборочного стола получаем такое зарядное устройство. И даже с корпусом практически никаких слесарных работ не нужно. Выходные/входные провода выведены сзади через пластмассовые разъемы. Таких зарядных в свое время было сделано десятки, и все работают до сих пор :-).


Далее приспособим сюда индикатор тока на светодиодах или на люминесцентном индикаторе, кому, как нравится. В итоге чтобы получить на выходе такое симпатичное зарядное устройство, надо всего совсем немного доработать нашу схему. На люминесцентном индикаторе:


На светодиодах:


И корпус без покраски, индикатор на КТ315И.


Если всё устраивает, то тогда продолжаю мурлыкать по теме. Для измерения тока с более менее сносной точностью, нужно собрать усилитель напряжения с шунта на LM358 и сам индикатор на двух LM324 или на КТ315-х и всё :-). Приведу схему отдельно усилителя, с простой платой, и отдельно самого индикатора. Крепить внутри лучше и проще. Индикаторов два варианта.


Схема усилителя. Диод D1, резистор R3, конденсатор С3 интегрирующая цепь, так как на входе пульсирующее напряжение отрицательной полярности, а нам надо на выходе получить постоянное напряжение пропорциональное току. Настройка: обязательно проверить 12 вольт, часто попадаются бракованные КРЕН-ки, затем резистором R2 калибруют показания индикатора по мультиметру. Резистором регулировки тока выставляете максимальный ток и резистором настраиваете, чтобы только-только зажегся, последний светодиод. Конденсатор С3 работает как интегратор и задает плавность спадания показаний индикатора.

Фото собранных плат усилителей напряжения с шунта (подстроечные сопротивления еще не запаяны).


Схема индикатора на КТ 315. Конечно, «прошлый век» и все такое, скажите Вы, но, а если их в наличии 3 литровая банка. Куда прикажите девать? Выбросить? А SMD-шные транзисторы надо идти на базар и купить, а места в корпусе все равно много. Сверлить отверстия под 315 тоже не надо. Но все же на ваш выбор, схема не критична к выбору транзисторов, хоть МП10 запаяйте, все равно будет работать.


Количество транзисторов и светодиодов можно уменьшить, например до 6 шт., но когда много, то красивше. Фото собранной линейки, пока еще без впаянных светодиодов.


И более ранняя разводка


Эмитерный повторитель можно и не запаивать, а включить напрямую, работает и без него, только спадают показания быстро, а не плавно по одному светодиоду. Иногда на некоторых экземплярах требовалось включать прямо включенный диод, типа КД522, между выходом усилителя и линейкой. Это было необходимо, когда при нулевом токе светились один — два первых светодиода. Налаживание линейки. Правильно собранный без ошибок индикатор работает сразу. Подключаем на вход переменный резистор — бегунок ко входу, правый конец резистора на +, левый на -. Подаем питание, вращаем резистор и смотрим на светодиоды, должны поочередно вспыхивать и гаснуть. Данный индикатор обладает существенной нелинейностью показаний (сначала завал и посередине бывают горбы), но для зарядного вполне подойдет. Просто при настройке значение каждого светодиода отмаркируете.

В схеме блока на плате надо добавить источник 6…8в для светодиодной линейки. Для люминесцентного индикатора добавлять этот источник не надо.


Фото собранной зарядки по вышеприведенным схемам, но на блоке ATX (разницы с АТ особой нет, отличие что питание TL494 питается от дежурки):


Фото крепления платы усилителя. Припаивается в основную плату выводами: корпус и +22в.


Далее приведу схему индикатора на операционных усилителях. В качестве самого индикатора лучше использовать люминесцентный индикатор (схема проще). Если использовать светодиоды, то надо будет добавить еще 8 резисторов по 2к и подключать катодами на корпус. Принцип работы прост. Схема в настройке не нуждается, кроме подбора резистора в цепи накала.


В данной схеме используется два счетверенных усилителя, для формирования восемь уровней индикации. Операционные усилители, используемые в этой схеме — LM324 (Или LM393 если используете светодиоды. Тогда подключаем их аноды на +, а катоды каждый на свой выход). Это довольно распространенная ИМС и найти ее не составит труда. Резисторы R2:.R10 образуют делитель, задающий пороги срабатывания каждого усилителя. Усилители работают в режиме компараторов.

Фото собранного индикатора тока на люминесцентный индикатор


Крепится к передней стенке с помощью термоклея пистолетом или паяльником.

Вышеприведенная схема имеет мягкую характеристику зарядного тока. Ток снижается плавно на протяжении всего времени заряда (Как в автомобиле).


Теперь рассмотрим схему с жесткой характеристикой зарядного тока.

Здесь ток снижается более круто и только к концу заряда. На протяжении основного времени ток стабильный. Здесь нам потребуется уже АТХ блок питания. Нововведение коснулось и защиты от переполюсовки и короткого замыкания. В данном зарядном шунт установлен по минусовой шине, поэтому необходимо разрезать соединение платы с корпусом блока. Если этого не сделать то при случайном касании плюсовым проводом металлического корпуса блок питания придется ремонтировать (менять джентльменский комплект — предохранитель, мост, пара MJE13007, резисторы 10 ом базовые :-)). Схема содержит усилитель напряжения с шунта, компаратор с обратной связью на конденсаторе ( о конденсаторе и его расчетах ниже) для более плавной работы и для устранения перерегулирования и любая из рассмотренных выше линеек индикаторов, но предпочтительней на LM324. В данном случае управление микросхемой TL494 осуществляем через вывод 4, как имеющий самое маленькое усиление и следовательно саму малую реакцию на изменение напряжения на его входе, а не 3, 1,16. При управлении через 4 вывод вся схема зарядного работает устойчиво, отсутствуют возбуждения, перерегулирования, нет нагрева выходных транзисторов.

Теперь немного теории. Для устойчивой работы замкнутых обратными связями преобразователей, необходимо, чтобы коэффициент усиления разомкнутого контура стал меньше единицы до того, как фазовый угол достигнет значения -180 гр. Кроме того, в области среза должен быть сформирован наклон ЛАХ (логарифмическая амплитудная характеристика) разомкнутой системы -20дБ/Дек, а в области низких частот коэффициент усиления должен быть достаточно большим для того, чтобы снизить погрешность при измерениях входного напряжения и тока нагрузки. Т.е. мы считаем частоту индуктора выходной емкости по формуле для LC. Потом для этой же частоты по формуле RC считаем сопротивление и емкость в цепи обратной связи. А если у нас выходной конденсатор низкого сопротивления, то по этой же формуле еще раз считаем следующий конденсатор и пару для него берем сопротивление из высокого плеча делителя выходного напряжения.


Правда там не сказано, от чего отталкиваться, выбирая соотношение для величины емкости и сопротивления. Т.е. знаем частоту, знаем формулу, но два неизвестных. А вот в этом


есть эмпирическая формула для подбора величины сопротивления в цепи обратной связи ОУ. R = 5800 * Cвых * Fперекрест * Vвых, где Fперекрест — численно принимается 1/10 от частоты работы преобразователя. Правда почему-то в 2й картинке они емкость считают отталкиваясь от 1/3 частоты LC, что вносит несуразицу, т.к. в 1й картинке считалось ровно по частоте LC. Но хотя бы примерный порядок для подбора величин эти данные дают.

Защита от переполюсовки и КЗ выполнена на двух транзисторах и светодиоде. Схема:


Настройка заключается в подборе R3 в зависимости от вашего шунта, и подборе R5 для ограничения максимального выходного тока на уровне 10 ампер. Доработки линеек индикаторов состоят только в установке и подстройке подстроечного сопротивления для диапазона отображения тока 3 — 10 ампер. Настройка канала тока. Резистор R5 временно меняем на подстроечник 10к выставляем его в положение максимального сопротивления. Подключаем мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 0,2 до 1 ампер то все нормально. Выставляем переменный резистор R6 в режим максимального напряжения с бегунка, а подстроечным резистором настраиваем ток 10 ампер. Затем выпаиваем подстроечник, замеряем и впаиваем постоянный резистор такого же сопротивления. Работа и настройка канала напряжения аналогично первой схеме.

Доработки основной платы АТХ блока для схемы управления на LM358.


Доработки схемы линеек:


В схеме с операционными усилителями ставим Р1 и подбираем его или подбираем R2, а Р1 не добавляем, а подключаем напрямую.


Подробней остановимся на защите от переполюсовки и от короткого замыкания. Схема своего рода «НОУ-ХАУ», по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод «ошибка подключения».


Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.

Для зарядки дополнительно и мотоциклетных аккумуляторов можно добавить переключатель подключающий дополнительный подобранный резистор в цепи вывода 1 TL494. Конструкция будет универсальной если поставите переменный резистор. На выходе можно регулировать напряжение до 20 вольт.


Если поставить мост в выходном канале 12в, то тогда можно регулировать напряжение до 35 вольт. Дальнейшие доработки ограничены только фантазией.

Дабы не быть голословным, привожу фотки работы зарядного

Фото работы зарядного устройства. Ток зарядки 10 ампер.


Также разработаны и другие схемные решения. Продолжение следует…


Файлы:
Печатные платы в формате SL 5.0.


Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Импульсное зарядное устройство для авто, схема, описание

К вашему вниманию простая схема импульсного ЗУ для автомобильного акб, компактная, проверенная в работе и со всеми защитами.

 зарядное устройство для автоЭлектронный трансформатор немного дорабатываем, чтобы в конечном итоге выход был 14 вольт, то есть если нет 14 вольт, то нужно немного домотать вторичную обмотку. Затем мы добавим (тут по желанию) сетевой фильтр. Сделаем обязательно диодный выпрямитель и схемы защиты от короткого замыкания, переполюсовки и перегрузки. Ну и добавим индикацию.

 домотать вторичную обмотку

 зарядное устройство для авто, схема

Я взял китайский электронный трансформатор на 80 ватт. Частота задаётся динистором DB3 в районе 30 кГц. Имеется 2 трансформатора, один ОС, второй (основной) понижающий.

. Были взяты ключи MJE 13005.

3 обмотки содержит тран-тор ОС, две базовые обмотки ключей и саму обмотку ОС. Были взяты ключи MJE 13005.

Чтобы использовать наше зарядное устройство можно было ещё и в качестве БП, реализуем включение без нагрузки.

Итак, что для этого надо….

1) Выпаять обмотку ОС и вместо неё сделать перемычку.
2) Мотаем 2 витка проводом 0.4 мм на основном трансе и подключаем всё это дело как показано на схеме ниже. Это делать не обязательно, если данное устройство будет работать только как зарядное для аккумуляторов.

Резистор нужно взять мощностью 5-10 ватт и то он всегда будет тёплый, но это нормально.

Такая переделка даёт нам защиту от короткого замыкания и включение системы без нагрузки. Но всё равно при длительном замыкании (больше 10 сек) ключи могут выйти из строя, поэтому мы будем делать отдельную защиту от короткого замыкания.

Сделаем на отдельной плате.

В схеме использован транзистор IRFZ44, можно взять и помощней IRF3205. Ключи можно использовать на ток более 20 ампер, такие как  IRFZ24, IRFZ40, IRFZ46, IRFZ48 и т.д. Теплоотвод для полевика не требуется. Выбор второго транзистора не критичен, я взял биполярник  MJE13003, но выбор за вами. Шесть резисторов по 0.1 ому,Шесть резисторов по 0.1 ому, подключены параллельно задают сопротивление шунта, которым подбирается ток защиты. При таком раскладе ток защиты срабатывает при нагрузке в 6 или 7 ампер. Также можно подстроить ток срабатывания переменным резистором.

Выходной ток БП доходит до 7 ампер, довольно прилично. Резисторы для шунта брал на 5 ватт, но подойдут и по 2-3 ватта.

Теперь нужно переделать чтобы выходное напряжение было 14 вольт вместо 10-12.

Это делается просто на вторичную обмотку доматываем всего 3 витка и этим повышаем напряжение на три вольта. Сердечник сам разбирать не обязательно. Провод брал сечением 1 мм и подключаем, вернее припаиваем нашу обмотку одним концом к заводской, а другой конец получается выходом. (то есть последовательно)

Теперь приступим к выпрямителю.

Диоды взял шоттки, выпаял из БП от компьютера. Нужны три одинаковые сборки. Обязательно диоды должны быть импульсные или ультрафасты и не менее 10 ампер. Подойдут и наши типа КД213 и подобные.

Диоды взял шоттки,Собираем мост, блоки в кучу и включаем в сеть 220, чтобы схема не сгорела (в случаи если что накосячили) её следует подключить через обыкновенную лампочку на 60-100 ватт, которую соединяем последовательно с нашей схемой.

При правильной сборке блок работает сразу, теперь замыкаем выход на нём, при этом загорается светодиод (свидетельствует о коротком замыкании).

Теперь собираем схему индикатора

 собираем схему индикатораСама схема взята от зарядника аккумуляторной отвёртки. Где зелёный огонёк показывает, что идёт заряд, а красный показывает, что есть напряжение на выходе блок питания.

Зелёный индикатор будет затухать постепенно и после 12.4 вольт он окончательно потухнет.

Зелёный индикатор

Сетевой фильтр

Но вот и осталось нам только сделать сетевой фильтр, он у нас будет состоять из 2-х плёночных конденсаторов и дросселя.

Коденсаторы подключаются перед дросселем и после.  Дроссель можно взять готовый от ИБП или намотать самому. Берём кольцо и мотаем две отдельные обмотки, по 20 витков проводом 0.5 мм. Конденсаторы по 0,47 мкФ 250 или 400 вольт, лучше взять плёночные. две отдельные обмоткиТеперь собираем всё в корпус и наслаждаемся полноценным импульсным зарядным устройством. Если будет желание, можно сделать и регулятор мощности.

В устройстве можно применить и более мощные трансформаторы. Практика показала надёжность данного устройства и его простоту в изготовлении. более мощные трансформаторы.Автор; АКА Касьян

ИМПУЛЬСНОЕ ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА АВТО

   В настоящее время, при построении мощных автомобильных зарядных устройств с токами до 10 ампер и более, мало кто использует обычные трансформаторы, да и достать их проблематично, не говоря уже о том, что пару кило меди обмоток будут стоить пару десятков долларов. В то же время практически у каждого есть готовый 12-ти вольтовый импульсный блок питания AT или ATX. Их мы и приспособим для создания самодельного зарядного к авто. Изучим схему устройства, клик по картинке для увеличения размера.

Схема переделки БП в импульсное зарядное

   Зарядка сделана на основе стандартного компьютерного блока питания. Схема не содержит цепей запуска блока, цеплять к зарядке дежурное питание не имеет смысла, а подпитка ключей только сильнее разогревает их, соответственно без АКБ работать не будет. 

   Налаживание зарядки довольно простое: не включая в сеть надо стать осциллографом на Б-Э любого ключа, к выходу зарядки подключить регулируемый БП, дальше выставить примерно 14,4-14,8 вольт, и подстроечным резистором R31 добиться прекращения генерации. Далее включить зарядное устройство в сеть, подключить нагрузку и подбором шунта выставить требуемый максимальный зарядный ток.

   Печатка прилагается, она находится в архиве на форуме. Зарядку можно дополнить цифровым вольтамперметром, собранном, к примеру, по такой схеме:

Схема цифрового ампервольтметра для ЗУ

   Выбор между вольтами и током осуществляется нажатием одной единственной кнопки. Печатная плата и прошивка там же на форуме, в архиве.

   Если нет возможности собрать или купить блок цифровой индикации напряжения и тока — ставьте любой подходящий стрелочный вольтметр на напряжение 20 вольт и амперметр на 10 ампер. Сборка, испытания и фото прибора — nickolay78.

   Форум по импульсным ЗУ

   Обсудить статью ИМПУЛЬСНОЕ ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА АВТО

Схемы простых мощных зарядных устройств для аккумуляторов




Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные
на тиристорах, симисторах и мощных полевых транзисторах.



Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ,
но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220
вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец,
просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.



Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ,
получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.

Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой
формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В).

Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.

Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.

Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью
от 10 до 120 А/ч представлена на Рис.2.


Рис.2



Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока
производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы
C1-C4.

Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А
с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать
на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой
ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на
радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН,
МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой
техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с
пределом измерения 30 А.



В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно,
имеют реактивную проводимость и не выделяют на себе тепловой мощности.

Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким
собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.

Вообще, тиристор — это прибор достаточно
капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых
в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные
устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.



Рис.3

Вот что пишет автор:



Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником
питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.

Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.

Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего
трансформатора Т1 через диодный мост VDI…VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается
до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка
зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л,
КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт
по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток.
Диоды VD1… VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта
устройств с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными
тиристорами Т-160, Т-250.

В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки
от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления
(к примеру, при 24… 26 В сопротивление резистора следует увеличить до 200 Ом).


Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение
трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих
на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации
в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном
(двухполярном) аналоге тиристора — симисторе.

На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4


Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть
использовано для зарядки различных аккумуляторов на напряжение 12В.


В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства
к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы
R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и
того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы
HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается.
В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.


Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной
нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.


Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими
резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются
параллельно первичной обмотке трансформатора.


Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного
тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.


При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.




Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).


Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому
повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки
выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные
полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Рис.6



Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6)
и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий
элемент — полевой транзистор VT1.

При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1
очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается —
рассеиваемая тепловая мощность не превышает 0,55 Вт.

В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное
напряжение 16… 17 В на конденсаторе С1 и зарядный ток до 6 А.

Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.

Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от
них можно уменьшить вдвое.

Чертёж платы представлен на Рис.7.

Рис.7



Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных
электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми
параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет
максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его
замена транзистором IRFZ44N.

Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается
в эффективном отведении тепла при увеличении тока нагрузки до 5 А.







 

схемы на самодельное зарядное устройство для АКБ

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольтЗУ на 12 вольтЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2Схема ЗУ Рассвет 2Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУУмное ЗУУмное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный видИнверторный видИнверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема ЭлектроникаСхема ЭлектроникаСхема Электроника

1 схема мощного ЗУ

Мощное ЗУМощное ЗУМощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУСоветское ЗУСоветское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3МСхема Электрон 3МСхема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схемаПростая схемаПростая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

СхемаСхемаСхема

1 упрощенная схема с сайта Паяльник

СхемаСхемаСхема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУИнтеллектуальное ЗУИнтеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

СхемаСхемаСхема

1 простая схема — как собрать ЗУ

СхемаСхемаСхема

Импульсное зарядное устройство для автомобильного аккумулятора: схема, инструкция

Широкую популярность получили импульсные зарядные устройства для автомобильных аккумуляторов. Схем таких устройств довольно много – одни предпочитают собирать их из подручных элементов, другие же используют готовые блоки, например от компьютеров. Блок питания персонального компьютера можно без особого труда переделать во вполне качественное зарядное для автомобильного аккумулятора. Буквально за пару часов можно сделать устройство, в котором можно будет проводить замер напряжения питания и тока зарядки. Нужно только добавить в конструкцию приборы для измерения.

Основные характеристики зарядников

Всего существует два типа зарядных устройств для аккумуляторных батарей:

  1. Трансформаторные – у них очень большой вес и габариты. Причина – используется трансформатор – у него внушительные обмотки и сердечки из электротехнической стали, у которой большой вес.
  2. Импульсные зарядные устройства для автомобильных аккумуляторов. Отзывы о таких устройствах более положительные – габариты у приборов небольшие, вес тоже маленький.

Именно за компактность и полюбились потребителям зарядные устройства импульсного типа. Но кроме этого, у них более высокий КПД в сравнении с трансформаторными. В продаже можно встретить только такого типа импульсные зарядные устройства для автомобильных аккумуляторов. Схемы у них в целом похожи, отличаются они только используемыми элементами.

Элементы конструкции зарядника

При помощи зарядного устройства восстанавливается работоспособность аккумуляторной батареи. В конструкции используется исключительно современная элементная база. В состав входят такие блоки:

  1. Импульсный трансформатор.
  2. Блок выпрямителя.
  3. Блок стабилизатора.
  4. Приборы для измерения тока зарядки и (или) напряжения.
  5. Основной блок, позволяющий осуществлять контроль процесса зарядки.

Все эти элементы имеют маленькие габариты. Импульсный трансформатор небольшой, наматываются его обмотки на ферритовых сердечниках.

Самые простые конструкции импульсных зарядных устройств для автомобильных аккумуляторов Hyundai или других марок машин можно выполнить всего на одном транзисторе. Главное – сделать схему управления этим транзистором. Все компоненты можно приобрести в магазине радиодеталей или же снять с блоков питания ПК, телевизоров, мониторов.

Особенности работы

По принципу работы все схемы импульсных зарядных устройств для автомобильных аккумуляторов можно разделить на такие подгруппы:

  1. Зарядка аккумулятора напряжением, ток при этом имеет постоянное значение.
  2. Напряжение остается неизменным, но ток при зарядке постепенно уменьшается.
  3. Комбинированный метод – объединение двух первых.

Самый «правильный» способ – это изменять ток, а не напряжение. Он подходит для большей части аккумуляторных батарей. Но это в теории, так как зарядники могут осуществлять контролирование силы тока только в том случае, если напряжение на выходе будет иметь постоянное значение.

Особенности режимов зарядки

Если ток остается постоянным, а меняется напряжение, то вы получите массу неприятностей – пластины внутри аккумуляторной батареи будут осыпаться, что приведет к выходу ее из строя. В этом случае восстановить АКБ не получится, придется только покупать новую.

Наиболее щадящим режимом оказывается комбинированный, при котором сначала происходит зарядка при помощи постоянного тока. Под конец процесса происходит изменение тока и стабилизация напряжения. С помощью этого возможность закипания аккумуляторной батареи сводится к минимуму, газов тоже меньше выделяется.

Как подобрать зарядное?

Чтобы АКБ прослужила как можно дольше, необходимо правильно выбрать импульсное зарядное устройство для автомобильного аккумулятора. В инструкциях к ним указываются все параметры: ток зарядки, напряжение, даже схемы в некоторых приводятся.

Обязательно учитывайте, что зарядник должен вырабатывать ток, равный 10 % от суммарной емкости аккумуляторной батареи. Также вам потребуется учесть такие факторы:

  1. Обязательно учитывайте у продавца, сможет ли конкретная модель зарядника полностью восстановить работоспособность аккумулятора. Проблема в том, что не все устройства способны делать это. Если в вашей машине стоит аккумулятор на 100 А*ч, а вы покупаете зарядник с максимальным током 6 А, то его явно будет недостаточно.
  2. Исходя из первого пункта, внимательно смотрите, какой максимальный ток может выдать устройство. Не лишним будет обратить внимание и на напряжение – некоторые устройства могут выдавать не 12, а 24 Вольта.

Желательно, чтобы в заряднике присутствовала функция автоматического отключения при достижении полного заряда аккумулятора. С помощью такой функции вы избавите себя от лишних проблем – не нужно будет контролировать зарядку. Как только достигнет зарядка максимума, устройство само отключится.

Несколько советов для работы с зарядниками

Обязательно во время эксплуатации подобного рода приборов могут возникнуть проблемы. Чтобы этого не произошло, нужно придерживаться простых рекомендаций. Главное – добиться того, чтобы в банках аккумуляторной батареи было достаточное количество электролита.

Если его мало, то долейте дистиллированной воды. Заливать чистый электролит не рекомендуется. Обязательно также учитывайте такие параметры:

  1. Величину напряжения зарядки. Максимальное значение не должно превышать 14,4 В.
  2. Величину силы тока – эту характеристику можно без особого труда регулировать на импульсных зарядных устройствах для автомобильных аккумуляторов «Орион» и аналогичных. Для этого на передней панели устанавливается амперметр и переменный резистор.
  3. Длительность зарядки аккумуляторной батареи. При отсутствии индикаторов сложно понять, когда аккумуляторная батарея заряжена, а когда разряжена. Подключите амперметр между зарядным устройством и аккумулятором – если его показания не изменяются и крайне малы, то это свидетельствует о том, что зарядка полностью восстановилась.

Какой бы зарядник вы ни использовали, старайтесь не переборщить – больше суток не держите аккумулятор. В противном случае может произойти замыкание и закипание электролита.

Самодельные устройства

За основу можно взять схему импульсного зарядного устройства для автомобильных аккумуляторов «Аида» или аналогичных. Очень часто в самоделках применяют схему IR2153. Ее отличие от всех остальных, которые используются для изготовления зарядников, в том, что устанавливается не два конденсатора, а один — электролитический. Но у такой схему есть один недостаток – с ее помощью можно сделать только маломощные устройства. Но эта проблема решается установкой более мощных элементов.

Во всех конструкциях применяются транзисторные ключи, например 8N50. Корпус у этих приборов изолирован. Диодные мосты для самодельных зарядников лучше всего использовать те, которые устанавливаются в блоках питания персональных компьютеров. В том случае если готовой мостовой сборки нет, можно сделать ее из четырех полупроводниковых диодов. Желательно, чтобы величина обратного тока у них была выше 10 ампер. Но это для случаев, когда зарядное будет использоваться с аккумуляторными батареями емкостью не более 70-8-0 А*ч.

Цепь питания зарядного устройства

В импульсных зарядных устройствах для автомобильных аккумуляторов Bosch и аналогичных обязательно используется в схеме цепи питания резистор для гашения тока. Если вы решили самостоятельно изготовить зарядник, то потребуется устанавливать резистор сопротивлением около 18 кОм. Далее по схеме находится выпрямительный блок однополупериодного типа. В нем применяется всего один полупроводниковый диод, после которого устанавливается электролитический конденсатор.

Он необходим для того, чтобы отсекать переменную составляющую тока. Желательно использовать керамические или пленочные элементы. По законам Кирхгофа составляются схемы замещения. В режиме переменного тока конденсатор заменяется в ней отрезком проводника. А при работе схемы на постоянном токе – разрывом. Следовательно, в выпрямленном токе после диода будут две составляющие: основная – постоянный ток, а также остатки переменного, их нужно убрать.

Импульсный трансформатор

В конструкции импульсного зарядного устройства для автомобильных аккумуляторов «Кото» используется специальной конструкции трансформатор. Для самоделок можно воспользоваться готовым – снять из блока питания персонального компьютера. В них применяются трансформаторы, которые идеально подходят для реализации схем зарядных устройств – они могут создать высокий уровень тока.

Также они позволяют обеспечить сразу несколько значений напряжений на выходе зарядника. Диоды, которые устанавливаются после трансформатора, должны быть именно импульсными, другие работать в схеме попросту не смогут. Они быстро выйдут из строя при попытке выпрямить высокочастотный ток. В качестве фильтрующего элемента желательно установить несколько электролитических конденсаторов и ВЧ-дроссель. Рекомендуется применить термистор сопротивлением 5 Ом, чтобы обеспечить снижение уровня бросков.

Кстати, термистор тоже можно найти в старом БП от компьютера. Обратите внимание на емкость электролитического конденсатора – ее нужно подбирать исходя из значения мощности всего устройства. На каждый 1 Ватт мощности требуется 1 мкФ. Рабочее напряжение не менее 400 В. Можно применить четыре элемента по 100 мкФ каждый, включенных параллельно. При таком соединении емкости суммируются.

Полностью автоматическое зарядное устройство для аккумуляторов

Привет всем, в этой статье я расскажу, как можно сделать простой импульсный стабилизатор, который может быть использован в качестве автомобильной зарядки, источника питания или лабораторного блока питания.Эта схема отлично заточена под зарядку автомобильных аккумуляторов с напряжением 12 вольт, но стабилизатор универсальный, поэтому им можно заряжать любые типы аккумуляторов, как автомобильных, так и всяких других, даже литий-ионных, если они снабжены платой балансировки.Схема зарядного устройства состоит из 2-х частей, блока питания и стабилизатора, начнём пожалуй со стабилизатора.Стабилизатор построен на популярного шим-контроллера TL494, позволит получить выходное напряжение от 2-х до 20 вольт, с возможностью ограничения выходного тока от 1 до 6 ампер, при желании ток можно поднять до 10 ампер.Процесс заряда будет осуществляться методом стабильного тока и напряжения, это наилучший способ для качественной и безопасной зарядки аккумуляторов. По мере заряда аккумулятора ток в цепи будет падать и в конце процесса будет равен 0, следовательно нет опасности перегрева аккумулятора или зарядного устройства, так что процесс не требует человеческого вмешательства.Возможно также использования этого стабилизатора в качестве лабораторного источника питания.

Теперь несколько о самой схеме

Это импульсный стабилизатор с шим-управлением, то есть КПД куда больше, чем у обычных линейных схем. Транзистор работает в ключевом режиме управляясь шим-сигналом, это снижает нагрев силового ключа. Основной транзистор управляется маломощным ключом, такое включение обеспечивает большое усиление по току и разгружает микросхему ШИМ.По сути это аналог составного транзистора. Транзистор нужен с током на менее 10 ампер, возможно также использование составных транзисторов прямой проводимости. Регулировка выходного напряжения осуществляется с помощью переменного резистора R9, для наиболее точной настройки желательно использовать многооборотный резистор, притом очень советую использовать резистор с мощностью 0.5 ватт.Нижним резистором можно установить верхнюю границу выходного напряжения, а подбором соотношения резисторов R1, R3, устанавливается нижняя граница выходного напряжения.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком. За ограничение тока отвечает переменный резистор R6, верхнюю границу выходного тока можно изменить подбором резистора R4.

Обратите внимание на чёткое срабатывание функции ограничения, даже при коротком замыкании, ток не более 6.5 ампер. Регулируется довольно плавно, если использовать многооборотный резистор.

Токовый шунт или датчик тока…, тут хотел бы обратить ваше внимание на то, что входные и выходные земли разделяются шунтом, обратите на это внимание при сборке. В качестве шунта можно использовать отрезок нихромовый проволоки с нужным сопротивлением. В моём же варианте было использование snd-шунты, которые можно найти на платах защиты аккумуляторов от ноутбука. Номинальное сопротивление шунта 0.5 ом +- 50%. При токе в 6 ампер такой шунт справляется очень даже не плохо.Силовой дроссель…  Сердечник взят из выходного дросселя групповой стабилизации компьютерного блока питания, обмотка состоит из 30 витков, намотана двойным проводом, диаметр каждого составляет 1 мм. Тут важен один момент, количество нужно будет подобрать в зависимости от рабочей частоты генератора и материалов магнитопровода. Не верно подобранный дроссель приведёт к сильному нагреву силового ключа при больших токах, это легко понять по характерному свисту при токах в 2-3 ампера, если свист присутствует, то нужно увеличить рабочую частоту генератора.Для этих целей сопротивление резистора R2 снижается до 1 ком и последовательно ему подключается многооборотный подстроечный резистор на 10 ком, таким образом частоту генератора можно менять в пределах от 50 до 550 кГц.

Введите электронную почту и получайте письма с новыми поделками.

После настройки на нужную частоту, подстроечный резистор выпаивается, измеряется его сопротивление, прибавляется к полученному числу сопротивление дополнительного резистора в 1 ком и сборка заменяется одним постоянным резистором близкого сопротивления. Этим настройка завершена…

Силовой диод VD1 очень советую — шотки, с напряжение не менее 60 вольт и током от 10 ампер. При токах в 3-4 ампера тепловыделения почти не наблюдается, если же собираетесь гонять схему на больших токах, то нужен радиатор. Возможно и применение обычных импульсных диодов с нужным током.В качестве источника питания может быть задействован либо импульсный блок питания, либо сетевой трансформатор дополненный диодным выпрямителем и сглаживающим конденсатором. В обоих случаях постоянное напряжение с источника питания должно быть не менее 16\17 вольт и ток до 10 ампер.

Я использовал обыкновенный трансформатор с диодным мостом. Ну вот вроде и всё, всем спасибо за внимание, печатка находиться в архиве.Архив к статье; скачать…

Автор; АКА Касьян

Схема зарядки щелочной батареи

— M0UKD — Блог любительского радио

Вот слаботочное зарядное устройство, которое я разработал в попытке продлить срок службы / перезарядить обычные неперезаряжаемые щелочные батареи. Уловка для этого состоит в трех вещах.

  • Используйте слабый ток в течение более длительного периода
  • Заряд, прежде чем они станут слишком истощенными
  • Зарядка не более чем на 110% от емкости элементов (например, заряд 1,5 В до 1,65 В и остановка)

Преимущество использования щелочных батарей в том, что они не имеют внутреннего разряда, в отличие от никель-кадмиевых и никель-металлгидридных аккумуляторов, и поэтому подходят для устройств с низким потреблением тока, таких как пульты дистанционного управления, часы или вещи, которые вы нечасто используете. как факелы.В своих тестах я обнаружил, что чем ниже скорость заряда, тем лучше заряд и меньше вероятность утечки электролита в ячейке. Кроме того, если элемент становится слишком плоским или полностью плоским, он не будет брать хороший заряд, а также, вероятно, будет протекать электролит и, возможно, даже откроется. Идея здесь в том, чтобы они пополнялись. Допустим, у вас есть свежие батарейки в фонарике, и вы какое-то время использовали их. Например, элементы разряжены примерно до 1,3 В. Положите их на осторожную зарядку с помощью этой схемы, следите за напряжением и остановите, когда оно достигнет 110%.Это будет 1,65 В для одной ячейки или 3,3 В для двух последовательно соединенных элементов. Не заряжайте более 110%, иначе существует риск протечки элемента или даже лопания / взрыва. Также не рекомендуется заряжать полностью разряженную щелочную батарею. По моему опыту, они не поглощают заряд и просто просачиваются. Некоторые из моих тестов, которые я проводил на улице зимой (около 2 ° C), я обнаружил, что элементы довольно быстро достигают 1,65 В, но не поглощают большую их часть из-за высокого внутреннего сопротивления при низких температурах. Зарядку следует проводить при комнатной температуре, около 20 ° C.

Вот принципиальная схема источника постоянного тока с использованием регулятора переменного напряжения LM317. Это очень простая схема для зарядки щелочных батарей. Он обеспечит стабильный постоянный ток, который можно регулировать путем переключения резисторов разных номиналов. Входное напряжение должно быть как минимум на 6 В выше, чем напряжение батареи, которую вы хотите зарядить. Светодиод, BC548 и резистор 470 Ом обеспечивают индикацию протекания тока, чтобы показать, что ваши соединения батареи в порядке.Их можно не указывать, если вы хотите упростить схему. Я использовал 12-позиционный поворотный переключатель, установленный на 5-позиционный переключатель, для выбора различных резисторов, чтобы получить выходные токи около 5, 10, 20, 30 и 40 мА. Идея в том, что для типов PP3 с напряжением 9 В я бы использовал 5 мА. Для AAA 10 мА. 20 мА для AA, 30 мА для C и 40 мА для D. Это всего лишь мой совет, вы можете попробовать то, что вам нравится! Просто помните, что больший ток не подходит для зарядки щелочных неперезаряжаемых батарей.

Вы можете не использовать переключатель и фиксировать ток, или использовать простой тумблер для переключения между 2 или 3 различными токами или любым другим способом!

Постоянный ток можно установить, выбрав соответствующий резистор.R = 1,25 ÷ I, где R имеет значения резистора в омах, падение опорного напряжение 1.25 регулятора в вольтах, и я это постоянный ток в амперах. Например, если вам нужен постоянный ток 100 мА, значение R будет: 1,25 ÷ 0,1 = 12,5 Ом. Рассеиваемая мощность на резисторе R в этом примере равна: P = V x I = 1,25 x 0,05 = 0,125 Вт или 125 мВт. Рассеиваемая мощность на микросхеме LM317 составляет: (Vin — Vout) x ток заряда. Радиатор не требуется для LM317 (TO220) в этой маломощной цепи. Если вы разрабатываете один с выходным током более 40 мА, вы должны его охладить.Обратите внимание, что металлический корпус или язычок ИС также содержит Vout, поэтому необходимо использовать изолирующие шайбы, если вы прикрепляете радиатор к металлическому корпусу. Резисторы большой мощности потребуются более 200 мА, но здесь они не нужны, поскольку мы используем малые токи для зарядки щелочных батарей! (200 мА = 1 4 Вт при 1,25 В)

Как это работает: LM317 поддерживает постоянное напряжение 1,25 В на резисторе независимо от входного напряжения или выходной нагрузки. Это означает, что когда ток нагрузки увеличивается или уменьшается, регулятор регулирует свой выход, чтобы поддерживать постоянное напряжение на резисторе, равном 1.Всегда 25 В и, следовательно, ток 1,25 ÷ R.

Одна из причин, по которой эта схема настолько проста, заключается в том, что большая часть схемы находится внутри самого LM317. Его сложную схему можно увидеть на внутренней принципиальной схеме ниже:

LM317 внутренняя схема

Да, вся схема размещена внутри LM317. Слева на схеме можно увидеть три контакта: вход, выход и регулировка. Внутри 26 транзисторов, 26 резисторов, 3 конденсатора и 4 стабилитрона.

Заявление об ограничении ответственности: производители батарей четко заявляют, что щелочные батареи нельзя перезаряжать. Существует возможность утечки химикатов / газов и / или взрыва. Некоторые щелочные батареи содержат небольшое количество ртути и / или кадмия. Всегда надевайте защитное снаряжение, такое как перчатки и очки, когда экспериментируете с батареями, и немедленно убирайте любые пролитые батареи. Не оставляйте зарядку без присмотра в помещении. Используйте эту схему на свой страх и риск!

.

Использование автомобильного зарядного устройства

Частые короткие поездки с постоянными остановками и пусками сделают ваш

аккумулятор
очень много работать, особенно зимой, когда обогреватель,
Фары
, окна с подогревом и дворники могут работать большую часть времени.

В конце концов, потому что больше
текущий
сливается из
аккумулятор
чем
генератор
можно поставить обратно, аккумулятора не хватит, чтобы включить

пусковой двигатель
. Батарея в таком состоянии
разряд
как говорят
квартира
.

А
плоский аккумулятор
можно избежать, если у вас есть
зарядное устройство
— относительно дешевый, но стоящий аксессуар.

Используется сетевой ток для замены разряженной батареи.
обвинять
через
положительный
а также
отрицательное
ведет этот клип к соответствующему
АКБ
.

Как зарядить аккумулятор

Средняя емкость автомобильного аккумулятора составляет около 48 ампер-часов, что означает, что при полной зарядке он обеспечивает 1 ампер в течение 48 часов, 2 ампера в течение 24 часов, 8 ампер в течение 6 часов и так далее.

Базовое зарядное устройство обычно заряжается примерно на 2 ампера, поэтому для получения 48 ампер, необходимых для полной зарядки плоского аккумулятора на 48 ампер-час, требуется 24 часа.

Но на рынке представлен широкий ассортимент зарядных устройств с разной скоростью заряда — от 2 до 10 ампер. Чем выше мощность заряда, тем быстрее заряжается разряженный аккумулятор. Однако быстрая зарядка нежелательна, поскольку может
пластины батареи
.

Нагрузку на аккумулятор можно определить по величине тока, потребляемого различными электрическими компонентами: фары потребляют от 8 до 10 ампер, а заднее стекло с подогревом примерно столько же.

Теоретически полностью заряженный аккумулятор, без потребления тока от
генератор
, должен работать
стартер
около десяти минут, или фары на восемь часов и обогрев заднего стекла на 12 часов. По мере того, как батарея почти полностью разряжается, свет постепенно тускнеет и, наконец, гаснет совсем.

Существуют и другие причины, помимо коротких поездок и холода, которые могут повлиять на состояние аккумулятора. Отказ чаще встречается на автомобилях, оснащенных динамо-машиной, а не
генератор
, потому что генератор вырабатывает больше электроэнергии и лучше заряжается при низкой
двигатель
скорости (см.
Как работает система зарядки
).

Ответ во всех этих случаях — частое тестирование с
ареометр
(Видеть

Проверка батарей
), чтобы узнать, сколько заряда осталось в аккумуляторе, и при необходимости воспользуйтесь зарядным устройством для подзарядки.

Подключение зарядного устройства


Некоторые батареи имеют цельную крышку крышки элемента, устанавливаемую в центральном лотке.

Всегда проверяйте
электролит
уровень перед подключением аккумулятора к зарядному устройству.При необходимости долейте (см.
Проверка батарей
) и очистите клеммы аккумулятора.

Если под рукой есть розетка, аккумулятор можно оставить в машине, если ток заряда составляет всего 3 или 4 ампера.

Однако, если в автомобиле есть генератор, отсоедините аккумулятор.
терминалы
заранее: в противном случае некоторые генераторы — как правило, более старые — могут быть повреждены.

Если отдельно
ячейка
крышки установлены, снимите их для вентиляции. Оставьте крышку лотка закрытой, если скорость зарядки не высока.Зажмите
положительный
(+) провод зарядного устройства, обычно красного цвета, к положительному полюсу аккумулятора. Подключите отрицательный (-) провод, обычно черный, к
отрицательный терминал
.

Включите зарядное устройство в сеть и
переключатель
на. Световой индикатор или манометр (
амперметр
) покажет, что аккумулятор заряжается.

Измеритель может сначала показывать высокую скорость зарядки, но она постепенно снижается по мере зарядки аккумулятора.

Если он был очень разряжен, зарядка скорее всего займет много времени; периодически проверяйте ареометром, продолжая зарядку.

На заключительных этапах клетки пузыряются и испускаются
газ
. Если любой из них начнется
отравление
раньше других, или делать это более жестко, вероятно, аккумулятор неисправен и его следует проверить в гараже или специалистом по аккумуляторным батареям.

Отключить перед отсоединением

После зарядки всегда выключайте сетевое питание и отсоединяйте зарядное устройство перед снятием клеммных зажимов — в противном случае зажимы могут
искра
как вы их снимаете и зажигаете газ, выделяющийся во время зарядки.

Убедитесь также в отсутствии электрического
схемы
включаются в автомобиле при повторном подключении аккумулятора — при замене второй клеммы аккумулятора и воспламенении газа аккумулятора может возникнуть искра.

Типы автомобильных зарядных устройств

Базовое домашнее зарядное устройство включает в себя трансформатор и выпрямитель для переключения сети 110/220
вольт

переменный ток
до 12 вольт
постоянный ток
, и позволяет источнику питания обеспечивать зарядный ток со скоростью, определяемой состоянием батареи.

В случае аккумулятора в хорошем состоянии, скорость заряда может составлять от 3 до 6 ампер с обычным домашним зарядным устройством.

Батарея по окончании срока службы не может подзаряжаться и, в любом случае, не будет удерживать заряд.

Некоторые зарядные устройства оснащены переключателем высокого и низкого уровня (Hi-Lo), что дает возможность выбора из двух скоростей зарядки — обычно 3 или 6 ампер — на тот случай, если вы хотите дать аккумулятору кратковременный заряд в течение ночи до 6 ампер, а не более длительный. зарядка на 3 ампера.

Многие из них имеют индикатор заряда, который может быть сигнальной лампой или датчиком, показывающим уровень заряда в амперах.

Обратите внимание, что сетевой шнур на всех зарядных устройствах должен быть
предохранитель
d. В противном случае используйте вилку с трехконтактным предохранителем. В качестве дополнительной меры предосторожности
подходит
кабель плавкого предохранителя ведет к аккумуляторной батарее.

.

Зарядка аккумуляторов с источником питания — Battery University

Узнайте, как заряжать аккумулятор без специального зарядного устройства.

Батареи можно заряжать вручную с помощью блока питания с настраиваемым пользователем напряжением и ограничением тока. Я подчеркиваю manual , потому что зарядка требует ноу-хау и ее нельзя оставлять без присмотра; прекращение начисления не автоматизировано. Из-за трудностей определения полного заряда никелевых батарей я рекомендую заряжать только свинцовые и литиевые батареи вручную.

Свинцово-кислотный

Перед подключением аккумулятора рассчитайте напряжение заряда в соответствии с количеством последовательно соединенных ячеек, а затем установите желаемое напряжение и ограничение тока. Чтобы зарядить 12-вольтную свинцово-кислотную батарею (шесть элементов) до предельного напряжения 2,40 В, установите напряжение на 14,40 В (6 x 2,40). Выберите зарядный ток в соответствии с размером батареи. Для свинцово-кислотной кислоты это от 10 до 30 процентов от номинальной мощности. Аккумулятор на 10 Ач при 30 процентах заряда примерно 3 А; процент может быть меньше.Стартерная батарея на 80 Ач может заряжаться до 8 А. (Уровень заряда 10 процентов равен 0,1C.)

Наблюдайте за температурой, напряжением и силой тока батареи во время зарядки. Заряжайте только при температуре окружающей среды в хорошо вентилируемом помещении. Как только аккумулятор полностью заряжен и ток упадет до 3 процентов от номинального Ач, заряд завершен. Отключите зарядку. Также отключите заряд через 16–24 часа, если ток упал до минимума и не может упасть; высокий саморазряд (мягкое короткое замыкание) может препятствовать достижению аккумулятором низкого уровня насыщения.Если вам нужен плавающий заряд для готовности к работе, уменьшите напряжение заряда примерно до 2,25 В / элемент.

Вы также можете использовать источник питания для выравнивания напряжения свинцово-кислотной батареи, установив напряжение заряда на 10 процентов выше рекомендуемого. Время перезарядки критично, и его необходимо тщательно соблюдать. (См. BU-404: Что такое уравнительный заряд.)

Источник питания также может обращать сульфатирование. Установите напряжение заряда выше рекомендуемого уровня, отрегулируйте ограничение тока до минимального практического значения и наблюдайте за напряжением аккумулятора.Полностью сульфатированная свинцовая кислота может сначала потреблять очень небольшой ток, и по мере растворения сульфатного слоя ток будет постепенно увеличиваться. Повышение температуры и установка батареи на ультразвуковой вибратор также могут помочь в этом процессе. Если аккумулятор не принимает заряд через 24 часа, восстановление маловероятно. (См. BU-804b: Сульфатирование и способы его предотвращения.)

Литий-ионный

Литий-ионный заряжается так же, как свинцово-кислотный, и вы также можете использовать источник питания, но проявляйте особую осторожность.Проверьте напряжение полной зарядки, которое обычно составляет 4,20 В на элемент, и установите соответствующий порог. Убедитесь, что ни одна из последовательно соединенных ячеек не превышает это напряжение. (Схема защиты в коммерческом блоке делает это.) Полная зарядка достигается, когда элемент (-ы) достигает напряжения 4,20 В / элемент, а ток падает до 3 процентов от номинального тока или достигает дна и не может упасть дальше. После полной зарядки отсоедините аккумулятор. Никогда не позволяйте ячейке оставаться при 4,20 В более чем на несколько часов.(См. BU-409: Зарядка литий-ионных аккумуляторов.)

Обратите внимание, что не все литий-ионные аккумуляторы заряжаются до порогового значения напряжения 4,20 В на элемент. Фосфат лития-железа обычно заряжается до предельного напряжения 3,65 В на элемент, а титанат лития — до 2,85 В на элемент. Некоторые энергетические элементы могут принимать 4,30 В на элемент и выше. Важно соблюдать эти пределы напряжения. (См. BU-205: Типы литий-ионных аккумуляторов.)

NiCd и NiMH

Зарядка никелевых аккумуляторов с помощью источника питания является сложной задачей, поскольку обнаружение полного заряда основывается на сигнатуре напряжения, которая изменяется в зависимости от приложенного зарядного тока.Если вам необходимо зарядить NiCd и NiMH от регулируемого источника питания, используйте повышение температуры при быстрой зарядке на 0,3–1 ° C как показатель полной зарядки. При зарядке малым током оцените уровень оставшегося заряда и рассчитайте время зарядки. Пустой никель-металлгидридный аккумулятор емкостью 2 Ач будет заряжаться примерно за 3 часа при токе 750–1000 мА. Постоянный заряд, также известный как плата за обслуживание, должен быть снижен до 0,05 ° C. (См. BU-407: Зарядка никель-кадмиевые;

.

350 Вт 12 В / 24 В 200 мАч Автомобильное Аварийное Зарядное Устройство Интеллектуальный Импульсный Ремонт ЖК-Зарядка Аккумулятора Сильная Защита Цепи Зарядки | |

Этим автомобильным зарядным устройством легко управлять и удобно носить с собой, он обладает стабильной защитой, защитой аккумулятора и многим другим.

Характеристики:
Защита от короткого замыкания, защита от низкого напряжения, защита от перенапряжения, защита от перегрузки по току, защита от перегрева, общее сопротивление землетрясению, защита от перезарядки и переразряда, защита от обратного подключения, обнаружение батареи.
Эффективность, страхование, энергосбережение.
Защита от перегрузки по разрядке.
Общее падение землетрясения.
Быстрая высокочастотная технология с трехступенчатой ​​зарядкой.
Автоматическая зарядка в одно касание, ЖК-дисплей.
Индикатор зарядки напрямую отображает процесс зарядки, что помогает пользователям управлять током аккумулятора.
Импортные электронные компоненты.

Технические характеристики:
Цвет: красный, черный
Область применения: 35 мАч-200 мАч
Входное напряжение: 160-260 В, 50 Гц ~ 60 Гц
Выходной ток: 14 А
Выходное напряжение: 12 В / 24 В
Номинальная мощность: 350 Вт
Полная нагрузка эффективность преобразования: 93% ± 3
Диапазон рабочих температур: от -30 ℃ до + 40 ℃
Размер элемента: 250 * 225 * 140 мм / 9.8 * 8,9 * 5,5 дюйма
Вес изделия: 1171 г / 2,6 фунта
Размер упаковки: 270 * 235 * 150 / 10,6 * 9,3 * 5,9 дюйма
Вес упаковки: 1395 г / 3,1 фунта

Список пакетов:
1 * Автомобильное зарядное устройство

Доставка:

1. Мы гарантируем отправку товара в течение 24-72 часов после подтверждения оплаты, за исключением выходных.
2. Мы отправляем почтой Китая, HKpost EMS, DHL, FedEx, по вашему выбору при размещении заказов.
3. Если вы не получили товар в течение 45 дней, пожалуйста, свяжитесь с нами. Мы приложим все усилия, чтобы решить эту проблему.
4. Мы не несем ответственности за задержки, вызванные таможней, импортными пошлинами, налогами или другими таможенными сборами.

Гарантия:

1. На все товары предоставляется гарантия 1 год. Если ваша покупка не соответствует товарному качеству, не соответствует назначению или не соответствует описанию, мы можем убедиться, что ваши проблемы решены.
2. В случае ошибочно отправленных товаров, пожалуйста, свяжитесь с нами в течение 48 часов после доставки. Мы организуем доставку нужных товаров или возврат всей вашей оплаты.
3. Для дефектных или неисправных продуктов, пожалуйста, сделайте фотографии или видео, мы повторно отправим или вернем деньги после подтверждения.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *