Компрессор нагнетатель автомобильный для двигателя: Компрессор (приводной нагнетатель)

Содержание

Компрессор (приводной нагнетатель)


Прокачать «сердце» автомобиля, усилить его движущую мощь хочет каждый автолюбитель. Есть несколько способов для получения заметного результата, но самым простым и распространенным является оборудование двигателя наддувом воздуха. Благодаря этому простому методу, можно добиться значительной прибавки лошадиных сил без увеличения рабочего объема, что в последнее время активно применяется большинством зарубежных автопроизводителей. Самыми распространенными являются турбокомпрессоры и приводные нагнетатели, которые на первый взгляд очень похожи, но в действительности имеют различия в конструкциях, тем самым оказывая разное влияние на характер автомобиля.


Чтобы понять, как работает эта система, не нужна специальная подготовка. Всё довольно просто: в цилиндры подается дополнительная порция воздуха, которая создает положительное давление на впуске. Это изменение отслеживается системой управления двигателем, которая настроена на приготовление рабочей смеси оптимального состава, что заставляет ее увеличить подачу топлива. В итоге мы получаем состав, при сгорании которого выделяется больше энергии, что и приводит к повышению мощности двигателя.


Рассмотрим основные отличия данных систем. Источником энергии для турбокомпрессоров являются отработанные газы двигателя, которые вращают турбинное колесо устройства. В отличие от них, приводные нагнетатели используют механическую передачу от коленвала двигателя. Поэтому производительность наддува находится в прямой зависимости от частоты вращения мотора, то есть компрессор в любой момент обеспечивает необходимую подачу воздуха.

Типы приводных нагнетателей


За последние сто лет было создано много типов приводных нагнетателей, но в современном автомобилестроении применяются чаще всего только три разновидности: роторные, винтовые и центробежные. Подача воздуха в первых двух видах производится при помощи двух цилиндрических вращающихся роторов особой формы, а в третьем — лопатками крыльчатки.

Роторные компрессоры


Ключевыми характеристиками роторных компрессоров является простота конструкции, большой срок эксплуатации, уравновешенность, высокая чистота подаваемого воздуха и положительная зависимость давления воздуха за компрессором от частоты вращения роторов. Эта особенность важна при работе двигателя в часто меняющихся режимах. Воздух в рабочей полости компрессора не сжимается, поэтому роторные приводные нагнетатели еще называют компрессорами с внешним сжатием. Устройства эффективны только при умеренной степени повышения давления, которая равна отношению величины давления нагнетания к давлению всасывания. При росте давления на впускном окне, КПД компрессора резко падает.


Чаще всего применяются роторные компрессоры, оснащенные двумя одинаковыми роторами и отличающиеся поперечным расположением впускного и выпускного окон в корпусе устройства. Это наглядно видно на приведенном рисунке.


К недостаткам таких компрессоров можно отнести заметную зависимость КПД устройства от величины зазоров между работающими деталями, большой нагрев, пульсацию давления нагнетания и сильный шум, которые заметны при применении простых в изготовлении прямозубых роторов. Исходя из этого, роторные компрессоры в основном используют для создания положительного давления со значениями не более 0,5-0,6 бара.


Стараясь уменьшить шум и улучшить равномерность подачи воздуха, роторы делают спиральной формы. Но даже эти ухищрения, как и применение окон клиновидной формы, только уменьшают пульсацию давления. Устранить ее полностью в компрессоре с внешним сжатием практически невозможно. Заметного уменьшения амплитуды пульсаций позволяет добиться применение трехзубчатых роторов вместо двухзубчатых. В этом случае период пульсации давления и скорости в проточной части устройства соответствует 60° угла поворота роторов.

Винтовые компрессоры


В отличие от роторного типа устройств, винтовые компрессоры обеспечивают диагональное движение воздуха в проточной части. Внутреннее сжатие достигается изменением объема полостей между корпусом и вращающимися винтовыми роторами. Такая конструкция позволяет получать довольно высокую степень повышения давления воздуха при высоком КПД (более 80%). Большая скорость вращения компрессора (до 12 тыс. об/мин) позволила снизить его габариты, к тому же появилась возможность использовать привод от газовой турбины.


Основными преимуществами винтового компрессора являются его высокая надежность и уравновешенность. Нагнетаемый воздух не содержит примесей масла, поэтому он наиболее пригоден для работы с поршневым двигателем.


Недостатком такого компрессора часто называют особую сложность формы роторов и их массивность, что ведет к их высокой стоимости. При работе винтовой компрессор производит шум высокой частоты, который вызывается пульсациями давления в режимах всасывания и нагнетания.


Рассмотрим конструкцию винтового компрессора на приведенном рисунке:


Его роторы представляют собой зубчатые колеса со спиральными зубьями, которые имеют большой угол наклона спирали. Профили зубьев и выемок роторов полностью соответствуют друг другу. В процессе работы зубья роторов не соприкасаются с корпусом и между собой, что достигается применением синхронизирующих шестерен на валах роторов. При этом отношение количества зубьев шестерен равно отношению количества зубьев соответствующих роторов. Основным распределительным органом при этом выступает ротор с впадинами.


Винтовые компрессоры могут создавать давление до 1 бара, а в некоторых случаях и выше, поэтому чаще всего применяются на мощных и скоростных автомобилях.


Центробежные компрессоры


Наибольшее распространение в двигателях внутреннего сгорания получили центробежные компрессоры. Этот тип устройств относится к лопаточным машинам, принцип действия которых основан на взаимодействии потока воздуха с лопатками рабочего колеса и неподвижных элементов машины. По сравнению с другими конструкциями, центробежные компрессоры имеют более компактные размеры и относительно просты в изготовлении.


Конструкция центробежного компрессора состоит из входного устройства, рабочего колеса (крыльчатки), и диффузора, который включает в себя безлопаточную и лопаточную части, причём последняя может отсутствовать. Также имеется воздухосборник, чаще всего выполняемый в виде улитки. В центробежном компрессоре воздух, пройдя через фильтр, попадает во входное устройство, которое для устойчивости потока постепенно сужается по направлению движения и служит для равномерного его подвода к колесу при минимальных потерях. Рабочее колесо устанавливается на шлицах, но в случае небольших размеров, может крепиться на гладком валу, который через механическую передачу связывается с коленвалом двигателя или рабочим колесом газовой турбины.


Основополагающими параметрами центробежного компрессора являются: расход воздуха, степень повышения давления и КПД компрессора. В современных устройствах, применяемых для наддува двигателей внутреннего сгорания, эти параметры могут изменяться в широком диапазоне. Так, например, степень повышения давления в компрессорах, приводимых в движение валом двигателя, может достигать 1,2 единиц. А в случае использования центробежного компрессора в форсированном комбинированном двигателе ее значение может достигать 3-3,5.


Центробежные компрессоры имеют много общего с турбокомпрессорами. Они довольно компактны, имеют небольшую цену и достаточно долговечны. Конечно, они не отличаются большим КПД и теряют свою эффективность на малых оборотах, но довольно часто применяются на отечественных автомобилях ВАЗ.


Хорошим примером такого устройства может служить компрессор «АutoTurbo» для ВАЗ 2110-2112 16V, 2170-2172 16V. Он может быть установлен на модель Лада-Приора, оснащенную ГУР или кондиционером. В комплекте используется серийный компрессор PK 23-1, создающий избыточное давление наддува до 0,5 бар при скорости вращения 5200 об/мин. Для его установки не требуется внесения изменений в конструкцию двигателя, только рекомендуется понизить степень сжатия путем замены штатной прокладки головки блока на более толстую. Разработчики изначально рассчитывали на максимальное упрощение установки компрессора, поэтому он может быть установлен автолюбителем самостоятельно.


Для установки на модель Нива-Шевроле предназначен центробежный компрессор «АutoTurbo» с установочным комплектом для ВАЗ 2123. В устройстве применен компрессор ПК-23, который при своевременной замене ремня и подшипников обладает неограниченным ресурсом. Создавая давление наддува до 0,5 бар, устройство отличается сравнительно небольшими габаритами и бесшумностью работы. Данный нагнетатель может устанавливаться на любые двигатели с максимальным объёмом 3 л.

Двигатель с компрессором: устройство, преимущества и недостатки

После появления первых ДВС главной задачей конструкторов и инженеров с самого начала стало повышение производительности силовой установки. Другими словами, основной целью является увеличение мощности двигателя. Как известно, самым простым способом становится решение физически увеличить рабочий объем двигателя и количество цилиндров. Двигатель «засасывает» из атмосферы больше воздуха, в результате можно сжигать больше горючего.

При этом такие силовые агрегаты с увеличенным рабочим объемом большие по размерам и весу, их дорого производить, не всегда удается разместить такой мотор в подкапотном пространстве компактного легкового спортивного авто и т.д. Еще одним способом увеличения мощности двигателя является постройка такого агрегата, который будет «выдавать» необходимую мощность и крутящий момент без увеличения объема камеры сгорания.

Решить задачу позволяет принудительное нагнетание воздуха в цилиндры под давлением. Для нагнетания воздуха на многих ДВС используется турбонаддув, еще одним решением является компрессор (нагнетатель механический). В этой статье мы рассмотрим, как устроен и работает автомобильный компрессор на двигатель, а также какие плюсы и минусы имеет компрессорный двигатель.

Содержание статьи

Компрессор на атмосферный двигатель

Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.

С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.

Как за счет компрессора происходит увеличение мощности двигателя

Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.

Казалось бы, чтобы увеличить мощность мотора, нужно подать больше топлива, однако на самом деле это не так. Если просто, избыток топлива приведет к тому, что без соответствующего количества воздуха горючее не будет эффективно сгорать. Получается, чтобы сжечь больше топлива, нужно одновременно подать большее количество воздуха.

Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню. На практике, нагнетатель способен поднять мощность мотора на 35-45%, отмечается около 30% процентов прироста крутящего момента по сравнению с точно таким же атмосферным аналогом.

Механический нагнетатель: устройство компрессора на двигатель автомобиля и принцип работы

Как уже было сказано выше, механические компрессоры приводятся в действие от коленчатого вала. Чаще всего для этого используется приводной ремень. Что касается компрессора, в его основе лежит ротор, который создает давление воздуха.

При этом компрессор должен вращаться быстрее коленвала ДВС. Для этого ведущая шестерня  изготавливается большей по размеру, чем шестерни компрессора. Компрессор вращается с частотой около 50 тыс. об/мин., поднимая давление PSI с 6 до 9 до дюймов на квадратный дюйм. С учетом того, что атмосферное давление составляет около 14.7 фунтов на квадратный дюйм, компрессор увеличивает подачу воздуха фактически в половину.

Добавим, что воздух, нагнетаемый под давлением, сильно сжимается и нагревается, теряя свою плотность. Простыми словами, чем меньше плотность, тем меньшее количество воздуха получится подать в цилиндры. Чтобы увеличить количество воздуха, его дополнительно следует охладить перед подачей во впуск.

За охлаждение отвечает интеркулер, который бывает воздушным и жидкостным. Интеркулеры представляют собой радиатор, куда попадает горячий сжатый воздух после выхода из компрессора для охлаждения.

Виды механических компрессоров

Механические компрессоры, которые устанавливаются на двигатель внутреннего сгорания:

  • роторный компрессор,
  • двухвинтовой нагнетатель;
  • центробежный компрессор;

Основные отличия заключаются в том,  как реализована подача воздуха. Компрессор роторный и двухвинтовой имеют в своем устройстве разные типы кулачковых валов. Центробежный нагнетатель оборудован крыльчаткой, которая затягивает воздух вовнутрь. Также отметим, что в зависимости от размеров и типа нагнетателя напрямую зависит его эффективность.

  • Например, роторные компрессоры обычно имеют большие размеры и ставятся сверху на двигатель. В основе лежит большой ротор. При этом данное решение отличается меньшей эффективностью, чем аналоги, так как вес автомобиля сильно увеличивается и создается прерывистый поток воздуха со «всплесками», а не постоянный и стабильный.
  • Двухвинтовой компрессор работает по принципу проталкивания воздуха через пару меньших по размеру роторов, похожих на червячную передачу. В результате работы воздух попадает в полости между лопастями роторов. Затем воздух сжимается внутри корпуса роторов.

Эффективность такого решения выше, однако стоимость нагнетателя боле высокая, конструкция сложнее и менее ремонтопригодна. Также двухвинтовой компрессор шумный, необходимо глушить характерный свист выходящего под давлением воздуха при помощи дополнительных решений.

  • Если рассматривать центробежный компрессор, это решение отличается от аналогов наличием крыльчатки, которая похожа на ротор. Крыльчатка сильно раскручивается, подавая воздух в корпус компрессора. При этом за крыльчаткой воздух движется с высокой скоростью, но еще находится под низким давлением.

Чтобы поднять давление, воздух проходит через диффузор. Указанный диффузор представляет собой лопатки, расположенные вокруг крыльчатки. В результате поток воздуха  после прохождения через диффузор начинает двигаться с малой скоростью, но уже под высоким давлением. Такой компрессор самый эффективный, легкий и небольшой по размерам. Их можно установить перед мотором, а не на двигателе сверху.

Преимущества и недостатки компрессора на двигатель

Итак, начнем с очевидных плюсов. Прежде всего, это увеличение мощности двигателя. Также следует выделить относительную простоту и дешевизну монтажа с минимальными переделками впускной системы по сравнению с установкой турбонаддува. Еще следует выделить отсутствие турбоямы благодаря прямой связи механического нагнетателя с коленвалом.

При этом компрессоры в зависимости от типа могут демонстрировать разную эффективность. Одни дают ощутимый прирост мощности на «низах» (коленвал вращается с небольшой частотой), тогда как другие  увеличивают мощность на средних и высоких оборотах. Как правило, роторный компрессор и двухвинтовой рассчитан на низкие обороты,  центробежные компрессоры хорошо работают на высоких.

  • Теперь перейдем к недостаткам компрессоров. Главным минусом принято считать отбор мощности у двигателя, так как компрессор приводится от коленвала. На практике компрессор забирает до 20% мощности мотора. Получается, общая прибавка до 50% в реальности является  фактическим увеличением мощности на 25-30%.

Рекомендуем также прочитать статью о том, как устроен турбонаддув. Из этой статьи вы узнаете об устройстве турбины и принципах работы данного решения, а также какую мощность обеспечивает турбина на двигателе.

Также установка компрессора означает, что двигатель начинает испытывать более высокие нагрузки. Такой мотор должен быть изготовлен с использованием рассчитанных на такие увеличенные нагрузки частей, что позволяет реализовать необходимый запас прочности.

В результате изготовление такого ДВС получается более затратным, автомобиль с компрессором стоит изначально дороже атмосферных версий. Еще нужно учитывать, что компрессор также нуждается в обслуживании, что увеличивает общие расходы на содержание ТС.

Подведем итоги

Как видно, механические нагнетатели являются одним из доступных и экономически обоснованных способов увеличения мощности атмосферного мотора. Как правило, данное решение остается востребованным в различных видах автоспорта, при создании уникальных проектов, во время постройки эксклюзивных спортивных авто и т.д.

Производители компрессоров часто предлагают готовые «киты» под ключ, что позволяет быстро установить компрессор на конкретную модель автомобиля с минимальными доработками. Для любителей тюнинга и форсирования двигателя такое решение во многих случаях более оправдано по сравнению с установкой турбонаддува на атмосферный мотор.

Напоследок отметим, что также можно встретить моторы, на которых одновременно установлена турбина и компрессор. Хотя практическая реализация достаточно сложна в техническом плане, такой подход позволяет добиться максимальной отдачи от устройств с учетом разных режимов работы ДВС и избавить двигатель от присущих данным технологиям недостатков, взятых по отдельности.

Например, успешно реализованная связка компрессор + турбина вполне способна заставить двигатель работать таким образом, когда компрессор обеспечивает нужную тягу «на низах», убирая турболаг (турбояму), затем после раскручивания двигателя подключается турбина. Практической реализацией такой схемы является двигатель Volkswagen 1.4 TSI.

Читайте также

Приводные нагнетатели — журнал За рулем

«Мото» начинает цикл материалов о наддувных силовых агрегатах. И если с первого взгляда их количество ничтожно мало, то это только с первого. Со второго становится понятно, что мы уже одной ногой в плотном мирке моторов с принудительным кормлением.

000_MOTO_1110_072

К преимуществам центробежников можно отнести простоту конструкции, компактность и малый вес. А также отсутствие жесткой необходимости применения интеркулеров, ибо греют воздух они намного меньше, чем лопастные нагнетатели и турбокомпрессоры.

К преимуществам центробежников можно отнести простоту конструкции, компактность и малый вес. А также отсутствие жесткой необходимости применения интеркулеров, ибо греют воздух они намного меньше, чем лопастные нагнетатели и турбокомпрессоры.

Идея увеличить мощность мотора, затолкав в него дополнительную порцию воздуха и топлива, стара как мир. И достичь этого можно, если создать на пуске давление больше атмосферного. Именно для этого и применяют нагнетатели. Их множество моделей, но в «Мото» №№ 8 и 9 (Horex и я со своей бешеной «голдой») мы говорили о центробежных. Если кратко, это высокоскоростные вентиляторы, а если образно — «пацанские пылесосы».

Сама идея принудительного нагнетания воздуха в цилиндры была предложена вскоре после изобретения самого ДВС. Уже в 1885 году Готтлиб Даймлер получил немецкий патент на нагнетатель. Идея заключалась в том, что некий внешний вентилятор, насос или компрессор нагнетает в двигатель увеличенный заряд воздуха. В 1902 году во Франции Луи Рено запатентовал проект центробежного нагнетателя. Но после выпуска нескольких автомобилей, все работы в этом направлении свернули — несовершенство технологий и материалов вываливало на чаши весов больше «против», чем «за». Аббревиатура ПЦН (приводной центробежный нагнетатель) укоренилась в обиходе мотористов в 30-е годы ХХ века — правда, только в авиации. Внедрение ПЦН позволило убить сразу двух зайцев: повысить удельную мощность и снизить падение мощности на больших высотах. (С ростом высоты плотность воздуха падает, соответственно, в движок его попадает меньше, и для сохранения мощности приходится загонять окислитель силком.) Все нагнетатели, устанавливаемые на двигатели внутреннего сгорания, по принципу работы можно разделить на две основные группы: центробежные и объемные. А по типу привода — на приводные (с приводом от коленвала) и газотурбинные (использующие энергию отработавших газов).

Что же такое ПЦН? Давайте окунемся в детство и вспомним юлу. Что будет, если на раскрученную юлу сверху плеснуть воды? Правильно, вода разбрызгается по сторонам под действием сил инерции (центробежной силы), а юла останется почти сухой. Так и в центробежном нагнетателе роль юлы выполняет крыльчатка, а роль воды — молекулы воздуха. Думаю, в детстве каждый заглядывал внутрь пылесоса и видел за решеткой отсека пылесборника странный диск с лопастями и гаечкой посередине. Это и есть простейший центробежный нагнетатель, только работает он на отсос, а не создание избыточного давления. А что будет, если подсоединить шланг к пылесосу, но с той стороны, откуда он выдувает воздух? А если его еще и внедрить во впуск двигателя…

Крыльчатка настоящего ЦН имеет довольно сложную конусообразную форму, а лопатки — сложный профиль и изгиб. От их геометрии зависит производительность и эффективность всего нагнетателя. (Скажем, чем больше диаметр крыльчатки, тем большее давление она может дать на тех же оборотах, но в то же время кушает больше мощности; или при увеличении количества лопастей растет давление, но падает производительность.) Воздух, пройдя по воздушному каналу в нагнетатель, попадает на радиальные лопасти крыльчатки. Лопасти отбрасывают его к периферии кожуха через тонкую щель. Там воздух тормозится в улиткообразном диффузоре, его скорость падает, а давление растет.

Фактически ПЦН — половинка уже привычного в мире авто турбокомпрессора, только вместо «горячей» (турбинной) части — механический привод от коленвала. В силу самого принципа работы у центробежного нагнетателя есть один существенный недостаток. Для эффективной работы крыльчатка должна вращаться не просто быстро, а очень быстро. Производимое центробежным компрессором давление пропорционально квадрату скорости крыльчатки. Соответственно, отсюда и основной недостаток центробежников: узкий рабочий диапазон. Но этот теоретический минус на практике оборачивается плюсом. Ведь если нагнетатель будет все время насильно пичкать мотор воздухом, то это приведет к росту тяги во всем диапазоне оборотов, и совладать с таким «фруктом» на низах будет тяжело. Другое дело, если избыток давления во впуске начинает зарождаться на средних оборотах и достигает пика на высоких, когда наполнение цилиндров ухудшается за счет потерь на трение о впускной тракт воздушно-топливной смеси (этим обуславливается заваленный вниз хвостик кривой крутящего момента в области высоких оборотов на многих дино-графиках). Центробежник здорово «наддувает» именно верхи, помогая смеси поступать в цилиндры в должном объеме. Именно поэтому отпадает необходимость отключать нагнетатель на малых оборотах, как это приходится делать с объемными компрессорами.

001_MOTO_1110_072

002_MOTO_1110_072

Чтобы избавить воздушный поток от лишних завихрений на лопастях крыльчатки, на вал часто устанавливают «кок».

Чтобы избавить воздушный поток от лишних завихрений на лопастях крыльчатки, на вал часто устанавливают «кок».

003_MOTO_1110_072

Количество лопастей и их профиль подбираются в полной гармонии с частотой вращения на рабочих режимах.

Количество лопастей и их профиль подбираются в полной гармонии с частотой вращения на рабочих режимах.

004_MOTO_1110_072

Величина зазора между лопастями крыльчатки и корпуса — основной параметр, влияющий на эффективность компессора.

Величина зазора между лопастями крыльчатки и корпуса — основной параметр, влияющий на эффективность компессора.

Все здорово, но неоспоримые недостатки есть и у центробежников. Главный — нужно раскрутить крыльчатку до бешеных оборотов, поэтому приходится применять повышающий редуктор, у которого на выходном валу 50–150 тыс. об/мин (у некоторых ПЦН этот показатель доходит до 250 тысяч!). Редкие подшипники и сальники могут выдержать такое, а потому вопрос ресурса и КПД зачастую оказывается актуальнее прибавки мощности. Да и общая эффективность двигателя снижается за счет того, что нагнетатель отжирает мощность прямо с коленвала. Но из каждой ямы проблем можно выбраться по тонкой веревке технологических решений. Например, BRP на своих спортивных гидроциклах приводит нагнетатель прямо от шестерни маховика коленвала, а от губительных для шестеренок рывков спасается применением фрикционного демпфера на валу нагнетателя. Yamaha приводит «улитку» через промежуточный вал. Если обратить взор на тюнинговые узлы, то видим, что например, в Rotrex (который обожают европейские мототюнингеры, и ваш покорный слуга в их числе) применяют фрикционный роликовый редуктор, в котором вал крыльчатки зажат между сателлитами планетарной передачи и не нуждается в подшипниках. Американцы из ProCharger, выведя на рынок кит для Harley-Davidson, делают упор на точность изготовления редуктора, их коллеги из Powerdyne любят «наддувать» снегоходы и используют в качестве мультипликатора дополнительную ременную передачу.

И снова вспоминаем детство, а также, кто помнит, физику. Когда мы накачивали свои велосипеды, мопеды и мотоциклы насосами типа «качок», помните, как нагревался шланг, идущий к колесу? Правильно, больше давление — выше температура, выше температура — меньше плотность воздуха, а значит, количество молекул кислорода на единицу объема. Чтобы скомпенсировать это уменьшение плотности, сжатый воздух необходимо охладить. Как? Так же, как и антифриз или масло — в радиаторе, а точнее, в интеркулере (по-научному, охладителе наддувочного воздуха). Интеркулеры в основном бывают типа воздух-воздух (на вид простой радиатор с более

Компрессор на двигатель своими руками: особенности тюнинга

Как известно, мощность любого атмосферного двигателя сильно зависит от рабочего объема, а также является в достаточной степени ограниченной физическим рабочим объемом ДВС. Если просто, атмосферный мотор «затягивает» наружный воздух благодаря разрежению, которое возникает в результате движения поршней в цилиндрах.

При этом от количества поступающего воздуха напрямую зависит и количество топлива, которое можно в дальнейшем эффективно сжечь. Другими словами, чтобы сделать атмосферный двигатель мощнее, необходимо увеличивать рабочий объем цилиндров, наращивать количество цилиндров или комбинировать то и другое.

Еще одним действенным способом является подача воздуха в двигатель под давлением. В этом случае объем цилиндра и количество «горшков» можно не менять, при этом воздух нагнетается принудительно, что автоматически позволяет подать больше горючего и далее сжечь такой заряд топливно-воздушной смеси с максимальной отдачей.

Среди нагнетателей воздуха следует выделить турбонаддув и механический компрессор. Каждое из решений имеет как свои плюсы, так и минусы, при этом установить механический нагнетатель воздуха своими руками на практике вполне может оказаться несколько проще, чем грамотно выполнить работы по установке турбонаддува.  Далее мы поговорим о том, можно ли поставить компрессор на двигатель своими руками и что нужно учитывать в рамках такой инсталляции.

Содержание статьи

Наддув двигателя механический: что нужно знать

Начнем  с того, что установка любого типа нагнетателя (механический или турбонаддув) возможна как на инжекторном, так и на карбюраторном двигателе. В обоих случаях предполагается ряд доработок силового агрегата, однако установить турбину на двигатель несколько сложнее и дороже по сравнению с компрессором.

Становится понятно, что механический нагнетатель является более доступным способом повышения мощности двигателя, такое решение проще установить на мотор, причем работы можно выполнить даже самостоятельно. При этом общий принцип действия нагнетателя достаточно прост.

Устройство фактически можно сравнить с навесным оборудованием (генератор, насос ГУР или компрессор кондиционера), то есть агрегат приводится от двигателя. В результате работы механического компрессора воздух сжимается и поступает в цилиндры под давлением.

Это позволяет лучше продувать (вентилировать) цилиндры от остатков отработавших газов, в значительной степени улучшается наполнение цилиндра, количество воздуха в камере сгорания повышается, что делает возможным сжечь больше топлива и увеличить мощность двигателя.

Работа компрессора дает такой же результат, как и турбонаддув. Главным отличием является только то, что турбонагнетатель использует для вращения турбинного колеса энергию выхлопных газов, в то время как механический компрессор связан с коленвалом двигателя посредством ременной передачи. Естественно, такой тип привода несколько отнимает мощность у ДВС, однако плюсом является простота конструкции.

Также компрессор имеет прямую зависимость от оборотов мотора. Чем сильнее раскручен двигатель, тем больше воздуха подается в камеры сгорания и, соответственно, увеличивается мощность. При этом нет ярко выраженного эффекта турбоямы (турболаг), который встречается на моторах с турбонаддувом. Турбояма проявляется в виде провала на низких оборотах, когда энергии выхлопа еще недостаточно для раскручивания турбины и создания необходимого давления для эффективной подачи воздуха в цилиндры.

Если говорить об установке механического компрессора на атмосферный карбюраторный или инжекторный двигатель, нужно понимать, что двигатель все равно нужно подготовить (учитывается изменение степени сжатия, осуществляются доработки «по железу», меняется прошивка ЭБУ на инжекторных моторах и т.д.).

Другими словами, все работы выполняются комплексно, что в дальнейшем позволяет форсированному силовому агрегату успешно и стабильно работать без значительного сокращения его моторесурса. Теперь давайте рассмотрим некоторые особенности такой установки.

Установка механического комперссора на двигатель: тонкости и нюансы

Начнем с того, что главной задачей является подбор механического нагнетателя, который будет соответствовать ряду требований (вес, габариты, производительность, режимы работы, особенности смазки, исполнение привода и т.д.).

Для этих целей можно приобрести компрессор от какого-либо автомобиля или же заказать готовый тюнинг-комплект для форсирования двигателя. Также отмечены случаи, когда нагнетатель изготавливался самостоятельно, однако такие самодельные решения достаточно редки, особенно на территории СНГ.

На практике зачастую устанавливают тюнинг-комплекты (турбо-Кит наборы), реже используют детали б/у, которые снимаются с других компрессорных автомобилей. Плюсом готового комплекта является то, что такой набор рассчитан для установки на конкретную модель автомобиля. Это значит, что вместе с компрессором поставляются крепежи, ремни, привод, воздуховоды, прилагается инструкция и т.д.

Единственным минусом можно считать относительно высокую цену проверенных предложений на рынке, тогда как более доступные по цене наборы могут иметь сомнительное качество и быстро выйти из строя.

Параллельно следует учитывать, что также необходимо доработать штатную систему охлаждения и топливоподачи с учетом изменившейся производительности силового агрегата. Если просто, форсирование двигателя при помощи компрессора предполагает то, что топлива за единицу времени нужно подавать больше. Для этого может понадобиться менять бензонасос, ставить боле производительные форсунки и т.д.

Также не следует забывать о том, что большая мощность достигается за счет сжигания большего количества топлива. Закономерно, что выделение тепла в этом случае также сильно увеличивается, а мотор потребует более интенсивного охлаждения.

Что в итоге

Сразу отметим, что установка нагнетателя воздуха вполне возможна своими руками, особенно если речь идет об использовании готового набора под конкретный двигатель. Также с учетом вышесказанного становится понятно, что хотя увеличение мощности двигателя при помощи механического компрессора вполне можно реализовать, при этом ошибочно полагать, что достаточно будет только поставить компрессор, после чего двигатель сразу станет намного мощнее.

Рекомендуем также прочитать статью о том, как форсировать двигатель автомобиля. Из этой статьи вы узнаете о доступном способе получения большей мощности путем увеличения рабочего объема двигателя и доработок отдельных элементов и узлов силового агрегата.

На самом деле, для получения ярко выраженного эффекта силовой агрегат нужно дорабатывать, причем во многих случаях достаточно серьезно (производится расточка блока для увеличения рабочего объема, затем также увеличивается ход поршня путем замены коленвала, самих поршней и шатунов, меняются клапана, распредвалы и т.д.).

Простыми словами, атмосферный мотор сначала максимально форсируется, после чего на него дополнительно «навешивается» механический компрессор. Далее необходимо грамотно настроить такой ДВС. Для авто с карбюратором следует настраивать дозирующую систему, переделок может также потребовать впуск и выпуск. На инжекторных машинах операции схожие, при этом в ЭБУ сначала прописывается тюнинг-прошивка (чип-тюнинг), после чего происходит дополнительная обкатка и коррекция прошивки в режиме онлайн (прямо на ходу).

Единственное, если давление наддува не выше 0.5 бара, штатную систему питания на многих авто можно не модернизировать. Также двигатель в этом случае может и вовсе не нуждаться в глубоком тюнинге. Ресурс «неподготовленного» мотора, само собой,  после установки механического компрессора сократится, однако если давление наддува не будет высоким, такой двигатель вполне может нормально проработать достаточно долгий срок.

Читайте также

Что такое компрессор? Роль компрессора в работе двигателя автотомобиля

Компрессором называют любое приспособление, которое предназначено для сжатия и подачи воздуха, а также других газов под давлением. Где используется это устройство?

Автомобильные инженеры, создатели гоночных авто и просто любители скорости все время работают над увеличением мощности двигателей. Одним из способов ее увеличения есть строительство мотора большого внутреннего объема, но большие двигатели много весят и кроме того затраты на их производство и содержание очень высоки.

ProCharger D1SC центробежный компрессор

Фото. ProCharger D1SC – центробежный компрессор

Второй способ увеличения интенсивности двигателя – это создание агрегата стандартного размера, но более эффективного в использовании. Более эффективной отдачи можно добиться при нагнетании большего объема воздуха в камеру сгорания, которое позволяет подать в цилиндр больше топлива, а значит достичь большей мощности за счет высокого давления и соответственно сильного выброса газа. Именно компрессор, который также называют нагнетателем, позволяет усилить подачу воздуха и увеличить мощность двигателя.

Кроме компрессора существует еще турбокомпрессор. Отличия между этими двумя устройствами состоят в способе извлечения энергии. Обычный компрессор приводится в действие энергией, которая передается от коленчатого вала мотора через ременный или цепной привод механическим путем. Что касается турбокомпрессора, то она работает благодаря сжатому потоку выхлопных газов, вращающих турбину.

Как работает компрессор

Для того чтобы понять как работает данный механизм, рассмотрим схему работы обычного четырехтактного двигателя внутреннего сгорания. С движением вниз поршня создается разрежение воздуха, который под действием атмосферного давления поступает в камеру сгорания. После поступления воздуха в двигатель он объединяется с топливной смесью и создает заряд, который можно трансформировать в полезную кинетическую энергию в результате горения. Горение создает свеча зажигания. Как только происходит реакция окисления топлива, выбрасывается большой объем энергии. Сила этого взрыва приводит в движение поршень, а сила этого движения поступает на колеса, заставляя их вращаться.

Более плотный поток топливно-воздушной смеси в заряд будет создавать более сильные взрывы. Но стоит понимать, что для сжигания конкретного количества топлива требуется определенное количество кислорода. Правильным считается соотношение: 14 частей воздуха к 1 части атмосферного воздуха. Эта пропорция имеет очень большое значение для эффективной работы силового агрегата автомобиля и выражает собой правило: “для того чтобы сжечь больше топлива нужно подать больше воздуха”.

В этом и состоит работа компрессора. Он сжимает воздух на входе в двигатель, позволяя наполнять двигатель большому его количеству и создавать повышение давления. Вместе с этим в двигатель может поступать большее количество топлива, вызывая увеличение мощности. В среднем компрессор прибавляет 46% мощности и 31% крутящего момента.

Механический нагнетатель запускается с помощью приводного ремня, обернутого вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня привод в движение шестерню нагнетателя. Ротор компрессора впускает воздух, сжимает его и вбрасывает во впускной коллектор. Скорость вращения компрессора составляет 50 – 60 тысяч оборотов в минуту. В результате нагнетатель увеличивает подачу воздуха в двигатель машины примерно на 50%.

Так как горячий воздух сжимается, он теряет свою плотность и не может сильно расшириться во время взрыва. В этом случае он не может отдать столько же энергии, сколько производится при возгорании свечой зажигания более прохладной топливно-воздушной смеси. Можно сделать вывод, что для того чтобы нагнетатель работал с максимальной отдачей сжатый воздух на выходе из устройства должен быть охлажден. Процессом охлаждения воздуха занимается интеркулер. Горячий воздух охлаждается в трубках интеркулера с помощью холодного воздуха или холодной жидкости, в зависимости от вида механизма. Снижение температуры воздуха, увеличивая его плотность, делает сильнее заряд, который поступает в камеру сгорания.

Виды компрессоров

Компрессоры бывают трех видов: двухвинтовые, роторные и центробежные. Основное отличие между ними состоит в способе подачи воздуха во впускной коллектор автомобильного двигателя.

Двухвинтовой компрессор

Двухвинтовый нагнетатель состоит из двух роторов, внутри которых циркулирует воздух. Эта конструкция создает много шума в виде свиста сжатого воздуха, который приглушают специальными методами шумоизоляции двигателя.

Двухвинтовой компрессор

Фото. Двухвинтовой компрессор

Роторный компрессор

Роторный нагнетатель расположен, как правило, в верхней части автомобильного двигателя и состоит из вращающихся кулачковых валов, которые перемещают атмосферный воздух во впускной коллектор. Он имеет большой вес и значительно утяжеляет вес транспортного средства. Кроме того, воздушный поток в данном виде компрессора имеет прерывистую структуру, что делает его наименее эффективным по сравнению с другими видами компрессоров.

Роторный компрессор

Фото. Роторный компрессор

Центробежный компрессор

Центробежный нагнетатель – наиболее эффективен для принудительного повышения давления внутри двигателя машины. Он представляет собой крыльчатку, вращающуюся с огромной силой и нагнетающую воздух в небольшой корпус компрессора. Центробежная сила выталкивает воздух к краю крыльчатки, заставляя его с огромной скоростью покидать ее полость. Маленькие лопатки, расположенные вокруг крыльчатки преобразуют высокоскоростной поток воздуха с низким давлением в низкоскоростной поток с высоким давлением.

Центробежный компрессор

Фото. Центробежный компрессор

Достоинства компрессора

Основным достоинством компрессора является, естественно, увеличение мощности двигателя транспортного средства. Эксперты считают механические нагнетатели несколько лучше турбированных, потому что двигатели, оборудованные ими, не имеют задержки реакции в ответ на нажатие водителем педали газа, потому что механические компрессоры приводятся в движение непосредственно от коленчатого вала двигателя. Турбокомпрессоры в свою очередь подвержены отставанию, так как выхлопные газы набирают скорость нужную для раскручивания турбин лишь после истечения некоторого времени.

Недостатки двигателей

Так как компрессор запускается с помощью коленчатого вала мотора, это немного уменьшает мощность силового агрегата. Компрессор увеличивает нагрузку двигателя, поэтому последний должен быть крепким настолько, чтобы выдерживать сильные взрывы в камере сгорания. Современные автопроизводители учитывают это условие и создают более сильные узлы для моторов, предназначенных для работы в паре с компрессором, что повышает стоимость автомобиля, а также стоимость его технического обслуживания.

В целом нагнетатели – это наиболее эффективный способ добавить двигателю транспортного средства лошадиных сил или мощности другими словами. Компрессор может добавить от 50 до 100% мощности, поэтому его часто устанавливают на свои авто гонщики и приверженцы высокоскоростной езды.

Устройство автомобиля. Как работает компрессор?

Как работает компрессор

 

С момента изобретения двигателя внутреннего сгорания автомобильные инженеры, любители скорости и проектировщики гоночных автомобилей все время находились в поисках путей увеличения мощности моторов. Один из способов увеличения мощности – построение двигателя большого внутреннего объема. Но большие двигатели, которые больше весят и обходятся существенно дороже в производстве и обслуживании, не всегда однозначно лучше.

Другой путь добавления мощности – это создание двигателя нормального размера, но более эффективного. Вы можете достичь этого, нагнетая больше воздуха в камеру сгорания. Большее количество воздуха дает возможность подать в цилиндр дополнительное количество топлива, что обозначает, что будет произведен более сильный взрыв и будет достигнута большая мощность. Добавление компрессора к впускной системе является отличным способом достижения усиленной подачи воздуха. В этой статье мы объясним, что такое компрессоры (их также еще называют нагнетателями), как они работают и чем отличаются от турбокомпрессоров (турбонаддува).

Компрессором является любое устройство, которое создает давление на выходе выше атмосферного. И компрессоры, и турбокомпрессоры способны это делать. На самом деле, турбокомпрессор является сокращенным названием от «турбонагнетателя» — его официального названия.

Различие между данными агрегатами заключается в способе получения энергии. Турбокомпрессоры приводятся в действие за счет плотного потока выхлопных газов, вращающих турбину. Компрессоры работают за счет энергии, передаваемой механическим путем через ременный или цепной привод от коленчатого вала двигателя.

В следующем разделе мы подробно рассмотрим, как компрессор выполняет свою работу.

 
Основы компрессора

Обычный четырехтактный двигатель внутреннего сгорания использует один из тактов для впуска воздуха. Этот такт можно разделить на три шага:


  • Поршень перемещается вниз

  • Это создает разрежение

  • Воздух под атмосферным давлением засасывается в камеру сгорания


Как только воздух поступит в двигатель, он должен быть объединен с топливом для формирования заряда – пакета потенциальной энергии, которую можно превратить в полезную кинетическую энергию в результате химической реакции, известной как горение. Свеча зажигания инициирует эту реакцию путем воспламенения заряда. Как только топливо подвергается реакции окисления, сразу же высвобождается большое количество энергии. Сила этого взрыва, сконцентрированная над днищем поршня, толкает поршень вниз и создает возвратно-поступательное движение, которое в конечном итоге передается на колеса.

Подача большего количества топливно-воздушной смеси в заряд будет порождать более сильные взрывы. Но вы не можете просто так подать больше топлива в двигатель, так как требуется строго определенное количество кислорода для сжигания определенного количества топлива. Химически-верная смесь – 14 частей воздуха к одной части топлива – имеет очень большое значение для эффективной работы двигателя. Итог – чтобы сжечь больше топлива, придется подать больше воздуха.

Это работа компрессора. Компрессоры увеличивают давление на входе в двигатель путем сжатия воздуха выше атмосферного давления без образования вакуума. Это заставляет большему количеству воздуха попадать в двигатель, обеспечивая повышение давления. С дополнительным количеством воздуха больше топлива может быть добавлено, что вызывает увеличение мощности двигателя. Компрессор добавляет в среднем 46 процентов мощности и 31 процент крутящего момента. В условиях высокогорья, где мощность двигателя снижается за счет того, что воздух имеет меньшую плотность и давление, компрессор обеспечивает более высокое давление воздуха в двигателе, что позволяет ему работать в оптимальном режиме.

Рис.1 ProCharger D1SC – центробежный компрессор

 

В отличие от турбокомпрессоров, которые используют отработанные газы для вращения турбины, механические компрессоры приводятся в действие непосредственно от коленчатого вала двигателя. Большинство из них приводятся в движение с помощью приводного ремня, который обернут вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня, в свою очередь, вращает шестерню компрессора. Ротор компрессора может быть по-разному спроектирован, но, не смотря на это, в любом случае его работа сводится к захвату воздуха, сжатию воздуха в меньшем пространстве и сбросу его во впускной коллектор. Для того чтобы создавать давление воздуха, компрессор должен вращаться быстрее, чем сам двигатель. Создание ведущей шестерни большей, чем шестерни компрессора, заставляет компрессор вращаться быстрее. Компрессоры способны вращаться со скоростью, превышающей 50,000-60,000 оборотов в минуту. Компрессор, вращающийся со скоростью 50,000 оборотов в минуту, способен повысить давление с шести до девяти дюймов на квадратный дюйм (PSI). Это дополнительная прибавка с шести до девяти фунтов на квадратный дюйм. Атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, так что типичный эффект от применения компрессора – это увеличение подачи воздуха в двигатель примерно на 50 процентов.

Постольку поскольку воздух сжимается, он становится более горячим, а это значит, что он теряет свою плотность и не может столь сильно расширяться во время взрыва. Это обозначает, что он не может высвободить столько же энергии, сколько высвобождается при воспламенении свечой зажигания более холодной топливно-воздушной смеси. Для того чтобы компрессор работал на пике своей эффективности, сжатый воздух на выходе из компрессора должен быть охлажден перед подачей во впускной коллектор. Интеркулер несет ответственность за данный процесс охлаждения. Интеркуллеры бывают двух констуркций: «воздух-воздух» и «воздух-жидкость». Оба работают по принципу радиатора, с более холодным воздухом или жидкостью, циркулирующей по системе трубок или каналов. Горячий воздух, выходя из компрессора, попадает в трубки интеркулера и охлаждается там. Снижение температуры воздуха увеличивает его плотность, что делает плотнее заряд, поступающий в камеру сгорания.

Далее мы рассмотрим различные типы компрессоров.

 

 
Роторный компрессор Roots

Существует три вида компрессоров: роторный, двухвинтовой и центробежный. Главное отличие между ними заключается в способе подачи воздуха во впускной коллектор двигателя. Роторный и двухвинтовой компрессоры используют различные типы кулачковых валов, а центробежный компрессор – крыльчатку, которая увлекает воздух внутрь. Хотя все эти конструкции обеспечивают прибавку мощности, они значительно отличаются по своей эффективности. Каждый из этих типов компрессоров может быть доступен в различных размерах, в зависимости от того, какого результата хотите вы достичь – просто повысить мощность автомобиля или подготовить его к участию в гонках.

Конструкция роторного компрессора является самой древней. Братья Филандер и Фрэнсис Рутс в 1860 году запатентовали конструкцию своего компрессора в качестве машины, способной обеспечивать вентиляцию в шахтах. В 1900 году Готтлиб Вильгельм Даймлер включил роторный компрессор в конструкцию автомобильного двигателя.

 

Рис.2  Роторный компрессор

 

Так как кулачковые валы вращаются, воздух, находящийся в пространстве между кулачками, оказывается между стороной наполнения и напорной стороной. Большое количество воздуха перемещается во впускной коллектор и создает условия для образования положительного давления. По этой причине рассматриваемая конструкция является не чем иным, как объемным нагнетателем, а не компрессором, при этом термин «нагнетатель» по-прежнему часто используется для описания всех компрессоров.

Роторные компрессоры, как правило, имеют довольно большие размеры и располагаются в верхней части двигателя. Они популярны в автомобилях дрэгстеров и роддеров, поскольку зачастую выступают за габариты капотов. Тем не менее, они являются наименее эффективными компрессорами по двум причинам:


  • Они существенно увеличивают вес транспортного средства.

  • Они создают дискретный прерывистый воздушный поток, а не сглаженный и непрерывный.


 
Двухвинтовой компрессор

Двухвинтовой компрессор работает, проталкивая воздух через два ротора, напоминающих набор червячных передач. Как и в роторном компрессоре, воздух внутри двухвинтового компрессора оказывается в полостях между лопастями роторов. Но двухвинтовой компрессор сжимает воздух внутри корпуса роторов. Это происходит за счет того, что роторы имеют коническую форму, при этом воздушные карманы уменьшаются в размерах по мере продвижения воздуха из стороны наполнения в напорную сторону. Воздушные полости сжимаются, и воздух выдавливается в меньшее пространство.

 

Рис.3 Двухвинтовой компрессор

 

Это делает двухвинтовой компрессор более эффективным, но они стоят дороже, потому что винтовые роторы требуют дополнительной точности в ходе процесса производства. Некоторые типы двухвинтовых компрессоров располагаются над двигателем, подобно роторному компрессору типа Roots. Они также порождают много шума. Сжатый воздух на выходе из компрессора издает сильный свист, который следует приглушить с помощью специальных методов поглощения шума.

 
Центробежный компрессор

Центробежный компрессор – это крыльчатка, напоминающая собой ротор, которая вращается с очень высокой скоростью и нагнетает воздух в небольшой корпус компрессора. Скорость вращения крыльчатки может достигать 50,000-60,000 оборотов в минуту. Воздух, попадающий в центральную часть крыльчатки, под действием центробежной силы увлекается к ее краю. Воздух покидает крыльчатку с высокой скоростью, но под низким давлением. Диффузор – множество стационарно расположенных вокруг крыльчатки лопаток, которое преобразует высокоскоростной поток воздуха с низким давлением в поток воздуха с малой скоростью, но высоким давлением. Скорость молекул воздуха, встретивших на своем пути лопатки диффузора, уменьшается, что влечет за собой увеличение давления воздуха.

 

Рис.4  Центробежный компрессор

 

Центробежные компрессоры являются наиболее эффективными и самым распространенными устройствами из всех систем принудительного повышения давления. Они компактные, легкие и устанавливаются на передней части двигателя, а не сверху. Они также издают характерный свист по мере роста количества оборотов двигателя, способный заставить случайных прохожих на улице поворачивать головы в сторону вашего автомобиля.

Monte Carlo и Mini-Cooper S – два автомобиля, которые доступны в версиях с компрессором. Любой из рассмотренных выше типов компрессоров может быть добавлен к транспортному средству как дополнительная опция. Несколько компаний предлагают комплекты, состоящие из всех необходимых частей для собственноручного дооснащения автомобилей компрессорами. Такие доработки также являются неотъемлемой частью культуры «машин для фана» (смешных машинок) и автомобилей из мира спорта «Fuel Racing». Некоторые производители даже включают компрессоры в оснащение своих серийных моделей автомобилей.

Далее мы узнаем обо всех преимуществах компрессора, установленного в ваш автомобиль.

 
Преимущества компрессора

Самое главное преимущество компрессора – это увеличение мощности двигателя, измеряемой в лошадиных силах. Добавьте компрессор к любому обычному автомобилю или грузовику, и он станет вести себя как автомобиль с двигателем большего внутреннего объема или просто как с более мощным двигателем. Но как узнать, какой из нагнетателей выбрать – механический компрессор или турбокомпрессор? Этот вопрос горячо обсуждался авто инженерами и энтузиастами, но, в целом, механические компрессоры имеют несколько преимуществ над турбокомпрессорами. Механические компрессоры лишены такого недостатка как лага (отставания) двигателя – термина, используемого для описания времени, прошедшего с момента нажатия водителем педали газа до момента ответа двигателя на это внешнее воздействие. Турбокомпрессоры, к сожалению, подвержены явлению отставания, постольку поскольку требуется некоторое время, прежде чем выхлопные газы достигнут скорости, достаточной для полноценного раскручивания крыльчатки турбины. Механические компрессоры не имеют такого лага, так как они приводятся в действие непосредственно от коленчатого вала двигателя. Одни компрессоры наиболее эффективны при работе в диапазоне низких скоростей вращения коленчатого вала, в то время как другие раскрывают весь свой потенциал лишь на высоких оборотах. Например, роторный и двухвинтовой компрессоры обеспечивают большую мощность на низких оборотах. Центробежные компрессоры, которые становятся все более эффективными по мере роста скорости вращения крыльчатки, обеспечивают большую мощность в диапазоне высоких оборотов.

Установка турбокомпрессора требует обширной переделки выпускной системы двигателя, в том время как механические компрессоры могут быть легко привинчены к передней части двигателя или сверху. Это делает их дешевле в установке и проще в эксплуатации и обслуживании.

Наконец, при использовании компрессора не требуется никакой специальной процедуры остановки двигателя. Это обусловлено тем, что они не смазываются моторным маслом и могут быть остановлены привычным образом. Турбокомпрессоры должны отработать на холостом ходу 30 секунд и более для того, чтобы дать возможность моторному маслу остыть. С учетом сказанного, для компрессоров имеет важное значение предварительный прогрев, так как они работают наиболее эффективно при нормальной рабочей температуре двигателя.

Компрессоры являются характерной составляющей частью двигателей внутреннего сгорания самолетов. Это имеет смысл, если учесть, что самолеты проводят большую часть своего времени на больших высотах, где значительно меньше кислорода доступно для сгорания. Внедрение компрессоров позволило самолетам летать на большей высоте без снижения производительности двигателя.

Компрессоры, установленные на авиационные двигатели, работают на основе тех же самых принципов, которые заложены в конструкцию автомобильных компрессоров. Компрессоры получают энергию непосредственно от вала двигателя и способствуют подаче в камеру сгорания смеси, находящейся под давлением.

Далее рассмотрим некоторые недостатки компрессоров.

 
Недостатки компрессоров

Самый большой недостаток компрессоров является также и их определяющей характеристикой: постольку поскольку компрессор приводится в движение коленчатым валом двигателя, он отнимает несколько лошадиных сил у двигателя. Компрессор может потреблять до 20 процентов общей выходной мощностью двигателя. Но так как компрессор способен прибавить до 46 процентов мощности, большинство автолюбителей склоняется к тому, что игра стоит свеч. Компрессор дает дополнительную нагрузку на двигатель, который должен быть достаточно прочным, чтобы выдерживать дополнительный импульс и более сильные взрывы в камере сгорания. Большинство производителей учитывают это и создают усиленные узлы для двигателей, предназначенных для работы в паре с компрессором. Это в свою очередь удорожает автомобиль. Компрессоры также дороже в обслуживании, а большинство производителей предлагают использовать высокооктановое горючее премиум класса.

Несмотря на свои недостатки, нагнетатели по-прежнему являются наиболее экономически эффективным способом увеличения количества лошадиных сил. Компрессор может дать от 50 до 100 процентов увеличения мощности, что делает его находкой для гоночных автомобилей, автомобилей, перевозящих тяжелые грузы, а также для водителей, желающих получить от вождения своего автомобиля новую порцию острых ощущений.

 

 

Источник: https://auto.howstuffworks.com/supercharger1.htm

Сравнительный анализ компрессоров и перспективы его установки на авто

Компрессор… Сколько восторженных взглядов порой притягивает этот серенький девайс рядом с двигателем даже несмотря на то, что под капотом любого современного автомобиля есть узлы куда более сложные, высокотехнологичные и, как принято нынче говорить, навороченные! И все же при всей простоте и очевидности принципа работы этого прибора многие по-прежнему путаются в многообразии его вариантов. Какие из них вообще можно называть компрессорами! Чем они отличаются от нагнетателей? Ответ прост: ничем.

И компрессор, и нагнетатель — это любое устройство, предназначенное для увеличения давления воздуха. Даже турбокомпрессор (он же турбонагнетатель) – это тоже компрессор, хоть и с приводом от газовой турбины. Ну а супер-, турбо- и другие — всего лишь иностранные синонимы наших терминов. И по большому счету все эти «рутсы», «лисхольмы» и «компрексы» делают одну и ту же работу — сжимают воздух во впускном коллекторе двигателя, резко увеличивая его отдачу. Впрочем, делают они ее все-таки по-разному.

И когда мы решаем вопрос, какой именно нагнетатель наилучшим образом подходит нашему автомобилю, эти различия становятся для нас весьма существенными. Какие здесь возможны варианты? Конечно, самые простые (и по устройству, и в установке на двигатель) — это компрессоры с приводом от коленчатого вала. Абсолютным же рекордсменом по простоте можно, пожалуй, назвать приводной центробежник. Он, кстати, есть почти в любом серийном моторе — в виде помпы, которая перекачивает жидкость в системе охлаждения. Если мы вздумаем поставить подобную помпу во впускной тракт, ее придется сделать достаточно большой (особо мощные двигатели ежеминутно потребляют десятки килограммов воздуха), но принцип работы сохранится: рабочее тело (то есть воздух) попадает на вращающееся с большой скоростью колесо с лопатками и отбрасывается к его периферии. Здесь корпус-улитка собирает этот веерообразный поток в один патрубок, откуда он и отправляется в дальнейшее путешествие по интеркулерам, коллекторам и цилиндрам.

Насколько хорошо работает такая система?

Этот нагнетатель, обладающий высоким КПД (у лучших образцов он достигает 80%!), способен развивать значительное давление наддува и не требует чрезмерных затрат энергии на собственные нужды. Недостаток у него лишь один, но весьма серьезный — эффективность зависит от частоты вращения его колеса, а значит, и коленвала, с которым оно связано через редуктор с постоянным передаточным отношением. И зависимость эта, как говорят математики, существенно нелинейна: при увеличении оборотов, скажем, на двадцать процентов, давление наддува (а с ним и крутящий момент двигателя!) может вырасти раза в полтора. Соответственно, при снижении оборотов тяга так же быстро упадет, что субъективно воспринимается как полное ее исчезновение.

Означает ли это, что для автомобильных двигателей центробежный компрессор совершенно не годится?

Ни в коем случае! Дело в том, что такой недостаток этих нагнетателей квалифицированный установщик может превратить в достоинство. Представьте себе мотор, имеющий «низовые» настройки, — с узкими фазами, небольшим перекрытием клапанов (забегая чуть вперед, заметим, что это вообще идеальный вариант для форсировки наддувом любого типа), длинными коллекторами. Крутящий момент здесь может быть весьма большим, и его максимум, как правило, смещен в зону малых оборотов. Зато и кривая мощности у подобных агрегатов начинает загибаться очень рано — при 5000 об/мин и ниже.

Вот такой, казалось бы, вялый двигатель можно очень легко оживить при помощи точно подобранного центробежника. Если передаточное число привода (обычно оно определяется диаметрами приводных ремней) подстроить так, чтобы на оборотах, где естественное наполнение идет на спад, вдруг начинался резкий рост давления наддува, то крутящий момент продолжил бы расти и дальше. Правда, отодвинется ближе к правой части шкалы тахометра, но будет значительно выше. Естественно, вырастет и мощность.

Центробежник — штука выносливая, но он очень не любит работать на запертый выход, то есть при маленьких расходах воздуха и больших давлениях наддува. И бездумно уменьшая диаметр шкива на компрессоре (его обороты от этого увеличиваются), можно доиграться до помпажа, который сопровождается резким падением давления и хлопками. Кстати, с подобным явлением сталкиваются и некоторые особо забывчивые, пренебрегающие установкой blow off-клапана (это такое Expottereo, которое стравливает воздух с выхода компрессора на его вход при закрытии дроссельной заслонки). Без него первый же сброс газа на больших оборотах может привести к своеобразному короткому замыканию.

Если говорить о двигателе, то неприятные для него последствия — по другую сторону графика. Предположим, мы заставили компрессор хорошо „дуть“ в нижнем диапазоне оборотов и при этом не вывели его за границы устойчивой (без помпажа) работы. Но ведь развиваемое им давление прогрессивно (и, можно сказать, почти безгранично) увеличивается по мере раскрутки. Если не принять меры, то не исключен овербуст, детонация (весьма опасная на больших оборотах и давлениях!) и разные другие неприятности вплоть до разрушения поршней и шатунов.

Вот для приводных нагнетателей объемного типа (например, Roots или Lysholm) такая опасность практически исключена благодаря их замечательной линейности — каждому обороту вала соответствует строго определенное количество воздуха. Примерно постоянным, не зависящим от оборотов будет и давление. С приемлемой для практики точностью можно сказать, что его величина однозначно задается диаметром приводных шкивов, а уж их выбирают, исходя из типа компрессора. Например, компрессоры Roots, которые не умеют сжимать воздух в своих недрах, а только проталкивают его по прогонной части.

Но не зря говорят, что недостатки — это продолжение достоинств. Большое давление, которое развивают объемные нагнетатели на малых оборотах, здорово помогает при интенсивном разгоне на полном дросселе. Здесь оно обеспечивает отменное, очень ровное и длительное ускорение. А если мы отпустим педаль и захотим прокатиться не спеша, в экономичном режиме? Сэкономить помешает компрессор, который будет тратить значительную часть мощности двигателя на трение лопастей о корпус и бесполезное проталкивание сжатого воздуха через прикрытую дроссельную заслонку. Поэтому системы такого типа, как правило, делают отключаемыми при помощи специальной муфты сцепления.

Этого недостатка начисто лишены нагнетатели центробежные. Да, на малых оборотах развиваемое ими давление невелико, но и потери минимальны. Кстати, такое качество центробежников широко используется в поршневых авиационных моторах.

На взлетном режиме, когда мощность важнее экономичности, компрессор работает в полную силу. Но стоит лишь чуть уменьшить обороты, как избыточный наддув тут же пропадает, свободно вращающееся колесо нагнетателя почти не создает излишнего противления и практически не повышает аппетит двигателя. Несмотря на то, что в чистом виде на автомобилях она встречается не так уж и часто. Если вал центробежного компрессора соединить с турбиной, то получится турбонагнетатель. Именно этот прибор сегодня устанавливается на автомобили с наддувными двигателями.

Что можно сказать о системах такого типа? В первую очередь, наверное, что „турбо“ — это тема! Благодаря турбонаддуву мы можем добиться чрезвычайно высокого уровня форсировки, неплохой экономичности и получить двигатель, обладающий практически любым необходимым нам характером. Но прежде чем рассматривать особенности работы турбомоторов, уместно поговорить о том, что же такое хорошо подобранный нагнетатель. То, что прибор должен быть надежным и качественным, это понятно. Очевидно и то, что его КПД должен быть близким к максимально возможному — во всяком случае, на наиболее часто используемых скоростях и режимах.

По каким параметрам можно судить о пригодности компрессора для того или иного автомобиля?

Их много, но чтобы выделить самый главный, достаточно вспомнить принципы работы двигателя. Казалось бы, что общего между скромной 1,5- литровой „четверкой» компактного хэтчбека и 12-цилиндровым произведением искусства под капотом BMW или Ferrari? Эти агрегаты разительно отличаются и объемом, и мощностью, и оборотами, при которых она достигается… Буквально всем! Но есть и сходства. Во-первых, разные моторы одного поколения имеют близкий механический КПД.

То есть на трение колец и подшипников мы тратим примерно одинаковое количество процентов от полезной работы газа в цилиндрах. Во-вторых, эта самая работа, выполняемая каждым килограммом смеси воздуха и топлива, строго зависит от степени сжатия и температуры сгорания. Последняя же при нормальных регулировках системы питания почти идентична как для двигателя мопеда, так и для агрегата от болида Формулы 1. А это значит, что практически одинаковой будет и мощность на коленвале, развиваемая этим килограммом воздуха в смеси с топливом.

Все это вместе взятое имеет очень важные последствия. Оказывается, компрессору все равно, сколько клапанов, цилиндров и литров рабочего объема имеет мотор. Главное, чтобы он расходовал нужное количество воздуха, что, как мы выяснили, соответствует совершенно определенному количеству лошадей.

Выходит, что кроме оптимального давления для нагнетателя, по большому счету, важна лишь мощность, которую мы рассчитываем получить от надутого им двигателя. То есть если мотор нашей Лады под избыточным давлением 0,6 кг/см2 будет развивать 150 л. с. (а он на это вполне способен!), то турбокомпрессор КОЗ от популярных 150-сильных „Фольксвагенов» и „Ауди“ с шильдиком 1,8 Turbo на корме нам придется впору. Пусть наш агрегат выдаст эту мощность на чуть больших оборотах (объем-то меньше!), но все будет работать как надо: режимы нагнетателя будут точно такими же, как и у автомобиля-донора. Конечно, этим вариантом спектр возможностей не ограничивается. Но золотое правило работает почти в любом случае: если совпадают давление наддува и расходы воздуха, то компрессор нам, скорее всего, подойдет. Первый параметр можно измерить на оборудованном им живом моторе (или выяснить у тех, кто это делал), а второй определяется мощностью, которую легко узнать из каталога.

Остается выполнить лишь одно условие. Планируемое нами давление должен спокойно выдерживать двигатель. И если оно достаточно большое, то не обойтись без уменьшения степени сжатия — иначе возможна детонация. Для решения этой проблемы, как правило, приходится изменять и настройки системы управления, которая вдобавок должна обеспечивать форсированный мотор положенным объемом топлива.

Колодийчук Андрей, специально для ByCars.ru

Infogalactic: ядро ​​планетарного знания

Нагнетатель — это воздушный компрессор, который увеличивает давление или плотность воздуха, подаваемого в двигатель внутреннего сгорания. Это дает в каждый цикл впуска двигателя больше кислорода, позволяя ему сжигать больше топлива и выполнять больше работы, тем самым увеличивая мощность.

Мощность для нагнетателя может быть обеспечена механически с помощью ремня, шестерни, вала или цепи, соединенной с коленчатым валом двигателя. Когда мощность обеспечивается турбиной, приводимой в действие выхлопными газами, нагнетатель известен как турбокомпрессор [1] — обычно упоминается просто как турбокомпрессор или просто турбо .Обычное использование ограничивает термин нагнетатель агрегатами с механическим приводом.

История

В 1860 году братья Филандер и Фрэнсис Марион Рутс, основатели компании Roots Blower Company из Коннерсвилля, штат Индиана, запатентовали конструкцию пневмодвигателя для использования в доменных печах и других промышленных применениях.

Первый в мире действующий, фактически испытанный нагнетатель двигателя [2] был изготовлен Дугальдом Клерком, который использовал его для первого двухтактного двигателя [3] в 1878 году.Готтлиб Даймлер получил немецкий патент на наддув двигателя внутреннего сгорания в 1885 году. Луи Рено запатентовал центробежный нагнетатель во Франции в 1902 году. Ранний гоночный автомобиль с наддувом был построен Ли Чедвиком из Поттстауна, штат Пенсильвания, в 1908 году, который, как сообщается, достиг скорости 100 миль в час. (160 км / ч).

Первыми в мире серийными автомобилями [4] с нагнетателем были Mercedes 6/25/40 л.с. и Mercedes 10/40/65 л.с. Обе модели были представлены в 1921 году и имели нагнетатели Roots.Они были обозначены как модели «Kompressor», происхождение значка Mercedes-Benz продолжается и сегодня.

24 марта 1878 года Генрих Кригар из Германии получил патент № 4121, запатентовав первый в мире винтовой компрессор. [5] Позже в том же году, 16 августа, он получил патент № 7116 после модификации и улучшения своих оригинальных конструкций. Его конструкции показывают сборку ротора с двумя лопастями, причем каждый ротор имеет ту же форму, что и другой. Хотя конструкция напоминала компрессор в стиле рутса, «винты» были четко показаны с поворотом на 180 градусов по длине.К сожалению, технологии того времени было недостаточно для производства такого агрегата, и Генрих не добился дальнейшего прогресса в создании винтового компрессора. Почти полвека спустя, в 1935 году, Альф Лисхольм, который работал на Ljungstroms Angturbin AB (позже известную как Svenska Rotor Maskiner AB или SRM в 1951 году), запатентовал конструкцию с пятью охватывающими и четырьмя охватывающими роторами. Он также запатентовал метод обработки роторов компрессора.

Типы нагнетателя

Существует два основных типа нагнетателей, определяемых в соответствии с методом перекачки газа: объемные и динамические компрессоры.Воздуходувки и компрессоры прямого вытеснения обеспечивают почти постоянный уровень повышения давления на всех оборотах двигателя (об / мин). Динамические компрессоры не создают давление на низких скоростях; выше пороговой скорости давление увеличивается с увеличением оборотов двигателя. [6]

Объемный объем

Винтовые роторы Lysholm со сложной формой каждого ротора, который должен работать с высокой скоростью и с жесткими допусками. Это делает этот тип нагнетателя дорогим. (Это устройство было окрашено в синий цвет, чтобы показать области близкого контакта.)

Насосы прямого вытеснения доставляют почти фиксированный объем воздуха за один оборот на всех скоростях (за вычетом утечки, которая почти постоянна на всех скоростях при заданном давлении, поэтому ее важность уменьшается на более высоких скоростях).

Основные типы поршневых насосов:

Тип сжатия

Насосы прямого вытеснения подразделяются на типы внутреннего и внешнего сжатия.

Нагнетатели Рутса

имеют только внешнее сжатие (хотя нагнетатели Рутса с большой спиралью пытаются имитировать внутреннее сжатие шнека Лисгольма).

  • Внешнее сжатие относится к насосам, перекачивающим воздух с давлением окружающей среды в двигатель. Если двигатель работает в режиме наддува, давление во впускном коллекторе выше, чем от нагнетателя. Это вызывает обратный поток от двигателя к нагнетателю, пока они не достигнут равновесия. Именно обратный поток сжимает поступающий газ. Это неэффективный процесс и основной фактор неэффективности нагнетателей Рутса при использовании на высоких уровнях наддува.Чем ниже уровень наддува, тем меньше потери, и нагнетатели Рутса очень эффективны при перемещении воздуха при низких перепадах давления, для чего они и были изобретены (отсюда и первоначальный термин «нагнетатель»).

Все остальные типы имеют некоторую степень внутреннего сжатия.

  • Внутреннее сжатие относится к сжатию воздуха внутри самого нагнетателя, которое уже на уровне наддува или близко к нему может плавно доставляться в двигатель с небольшим обратным потоком или без него.Это более эффективно, чем сжатие с обратным потоком, и позволяет достичь более высокой эффективности. В устройствах внутреннего сжатия обычно используется фиксированная степень внутреннего сжатия. Когда давление наддува равно давлению сжатия нагнетателя, обратный поток равен нулю. Если давление наддува превышает это давление сжатия, обратный поток все равно может возникать, как в воздуходувке Рутса. Воздуходувки внутреннего сжатия должны быть согласованы с ожидаемым давлением наддува, чтобы достичь более высокой эффективности, на которую они способны, в противном случае они будут страдать от тех же проблем и низкой эффективности, что и нагнетатели Рутса.
Рейтинг вместимости

Нагнетатели прямого вытеснения обычно оцениваются по их мощности на оборот. В случае воздуходувки Рутса типовой рейтинг GMC. Типы GMC оцениваются в зависимости от того, сколько двухтактных цилиндров и размер этих цилиндров предназначены для продувки. GMC произвела 2–71, 3–71, 4–71 и знаменитые 6–71 воздуходувки. Например, воздуходувка 6–71 разработана для очистки шести цилиндров объемом 71 кубический дюйм (1163 куб. См) каждый и будет использоваться на двухтактном дизельном двигателе объемом 426 кубических дюймов (6 981 куб. См), который обозначается как 6–71; воздуходувка носит такое же обозначение.Однако, поскольку 6–71 — это на самом деле обозначение двигателя , фактический рабочий объем меньше, чем можно было бы предположить при помощи простого умножения. 6–71 фактически перекачивает 339 кубических дюймов (5 555 куб. См) за оборот (но поскольку он вращается быстрее, чем двигатель, он может легко выдавать такой же рабочий объем, что и двигатель за один оборот двигателя).

Производные модели вторичного рынка продолжают тенденцию с 8–71 до нынешних 16–71 воздуходувок, используемых в различных автоспорте. Из этого видно, что 6–71 примерно в два раза больше, чем 3–71.GMC также произвела серию объемом 53 куб. См (869 куб. См) в размерах 2–, 3–, 4–, 6– и 8–53, а также серию «V71» для двигателей с V-образной конфигурацией.

динамический

Компрессоры

Dynamic полагаются на ускорение воздуха до высокой скорости, а затем замену этой скорости на давление, рассеивая или замедляя его.

Основные типы динамических компрессоров:

Типы приводов нагнетателя

Нагнетатели дополнительно определяются в соответствии с их методом привода.

  • Ремень (клиновой ремень, синхронный ремень, плоский ремень)
  • Прямой привод
  • Зубчатая передача
  • Цепной привод

Температурные эффекты и интеркулеры

Supercharger CDT vs.Температура окружающей среды . График показывает, как CDT нагнетателя зависит от температуры воздуха и высоты (абсолютное давление).

Одним из недостатков наддува является то, что сжатие воздуха увеличивает его температуру. Когда в двигателе внутреннего сгорания используется нагнетатель, температура топливно-воздушного заряда становится основным ограничивающим фактором в работе двигателя. Экстремальные температуры вызовут детонацию топливно-воздушной смеси (двигатели с искровым зажиганием) и повреждение двигателя. В автомобилях это может вызвать проблемы, когда на улице жаркий день или когда достигается чрезмерный уровень наддува.

Можно оценить повышение температуры в нагнетателе, смоделировав его как изоэнтропический процесс.

Где:

= температура окружающего воздуха
= температура после компрессора
= окружающее атмосферное давление (абсолютное)
= давление после компрессора (абсолютное)
= Коэффициент удельной теплоемкости = 1,4 для воздуха
= Удельная теплоемкость при постоянном давлении
= Удельная теплоемкость при постоянном объеме

Например, если двигатель с наддувом нагнетает давление 10 фунтов на кв. Дюйм (0.69 бар) наддува на уровне моря (окружающее давление 14,7 фунтов на квадратный дюйм (1,01 бар), температура окружающей среды 75 ° F (24 ° C)), температура воздуха после нагнетателя будет 160,5 ° F (71,4 ° C) . Эта температура известна как температура нагнетания компрессора (CDT) и подчеркивает, почему метод охлаждения воздуха после компрессора так важен.

Хотя это правда, что более высокие температуры всасывания для двигателей внутреннего сгорания будут поглощать воздух меньшей плотности, это верно только для статического, неизменного давления воздуха.то есть в жаркий день двигатель будет потреблять меньше кислорода за цикл двигателя, чем в холодный день. Однако нагрев воздуха в компрессоре нагнетателя не снижает плотность воздуха из-за повышения его температуры. Повышение температуры происходит из-за повышения давления. Энергия добавляется к воздуху, и это видно как по его внутренней энергии, внутренней по отношению к молекулам (температуре), так и по статическому давлению воздуха, а также по скорости газа.

Промежуточное охлаждение не изменяет плотность воздуха после его сжатия.Это только удаление тепловой энергии воздуха из процесса сжатия. то есть промежуточный охладитель только удаляет энергию, вложенную в процесс сжатия, и не изменяет плотность воздуха, так что смесь воздух / топливо не настолько горячая, чтобы вызвать ее воспламенение до того, как искра воспламенит ее, иначе известная как предварительное зажигание.

Двухтактные двигатели

Для двухтактных двигателей требуется продувка выхлопных газов. В небольших двигателях это обычно достигается за счет использования картера в качестве нагнетателя, опускающийся поршень во время рабочего хода сжимает воздух в картере, используемый для продувки цилиндра.Не следует путать продувку продувкой с наддувом, сжатия заряда не происходит. Поскольку изменение объема, производимое нижней стороной поршня, такое же, как и на верхней поверхности, это ограничивается продувкой и не может обеспечить какой-либо наддув.

В более крупных двигателях обычно используется отдельный вентилятор для продувки, и именно для этого типа работы был разработан вентилятор Рутса. Исторически использовалось множество конструкций воздуходувок, от отдельных насосных цилиндров, поршней с цилиндрической головкой, объединяющих два поршня разного диаметра, больший из которых используется для продувки, различных роторных нагнетателей и центробежных турбокомпрессоров, включая турбокомпрессоры.Турбонаддув двухтактных двигателей затруднен, но не невозможен, поскольку турбонагнетатель с приводом от выхлопных газов не обеспечивает никакого наддува, пока не успеет набрать нужную скорость. Таким образом, двухтактные двигатели с чисто турбонаддувом могут испытывать трудности при запуске из-за плохого сгорания и грязных выхлопных газов, возможно даже четырехтактных. Некоторые двухтактные турбокомпрессоры имеют механический привод через сцепление, используемое для запуска.

Простые двухтактные двигатели с отверстиями для впуска и выпуска не могут иметь наддув, так как впускное отверстие всегда закрывается первым.По этой причине двухтактные дизельные двигатели обычно имеют механические выпускные клапаны с раздельными фазами газораспределения для обеспечения наддува. Независимо от этого, двухтактные двигатели требуют продувки на всех оборотах двигателя, поэтому двухтактные двигатели с турбонаддувом должны по-прежнему использовать нагнетатель, обычно типа Рутса. Этот нагнетатель может иметь механический или электрический привод, в любом случае нагнетатель может отключаться после того, как турбонагнетатель начинает подавать воздух.

Автомобили

1929 «Воздуходувка» Бентли. Большой «нагнетатель», расположенный перед радиатором, дал машине название.

В 1900 году Готтлиб Даймлер из Daimler-Benz (Daimler AG) первым запатентовал систему принудительной индукции для двигателей внутреннего сгорания, нагнетатели на основе конструкции двухроторного воздушного насоса, впервые запатентованной американцем Фрэнсисом Рутсом. в 1860, — базовая конструкция для современного нагнетателя типа Рутса.

Первые автомобили с наддувом были представлены на Берлинском автосалоне 1921 года: Mercedes мощностью 6/20 л.с. и 10/35 л.с. Эти автомобили были запущены в производство в 1923 году как 6/25/40 л.с. (считается первым дорожным автомобилем с наддувом [7] ) и 10/40/65 л.с. [8] Это были обычные дорожные автомобили, поскольку другие автомобили с наддувом в то же время были почти всеми гоночными автомобилями, включая Fiat 805-405 1923 года, Miller 122 1923 года [9] 1924 Alfa Romeo P2, 1924 Sunbeam, [10 ] 1925 Delage, [11] и Bugatti Type 35C 1926 года. В конце 1920-х годов компания Bentley создала версию дорожного автомобиля Bentley объемом 4½ литра с наддувом. С тех пор нагнетатели (и турбокомпрессоры) широко применяются в гоночных и серийных автомобилях, хотя технологическая сложность и стоимость нагнетателя в значительной степени ограничивают его доступностью для дорогих высокопроизводительных автомобилей.

Наддув в сравнении с турбонаддувом

Охлаждение воздуха, поступающего в двигатель, является важной частью конструкции как нагнетателей, так и турбонагнетателей. Сжатие воздуха увеличивает его температуру, поэтому обычно используется небольшой радиатор, называемый промежуточным охладителем, между насосом и двигателем, чтобы снизить температуру воздуха.

Существует три основных категории нагнетателей для автомобильной промышленности:

  • Центробежные турбокомпрессоры — с приводом от выхлопных газов.
  • Центробежные нагнетатели — приводятся в действие напрямую от двигателя через ременную передачу.
  • Насосы прямого вытеснения, такие как воздуходувки Roots, Twin Screw (Lysholm) и TVS (Eaton).

Воздуходувки Рутса имеют КПД только 40–50% при высоких уровнях наддува; Напротив, центробежные (динамические) нагнетатели имеют КПД 70–85% при высоком наддуве. Воздуходувки типа Lysholm могут быть почти такими же эффективными, как их центробежные аналоги, в узком диапазоне нагрузки / скорости / наддува, для которого система должна быть специально разработана.

Нагнетатели с механическим приводом могут поглощать до трети всей мощности коленчатого вала двигателя и менее эффективны, чем турбокомпрессоры. Однако в приложениях, для которых реакция двигателя и мощность более важны, чем другие соображения, например, в драгстерах с верхним топливом и транспортных средствах, используемых в соревнованиях по тяге тракторов, очень распространены нагнетатели с механическим приводом.

Тепловой КПД или доля энергии топлива / воздуха, которая преобразуется в выходную мощность, меньше у нагнетателя с механическим приводом, чем у турбокомпрессора, поскольку турбокомпрессоры используют энергию выхлопных газов, которая обычно теряется.По этой причине и экономичность, и мощность двигателя с турбонаддувом обычно лучше, чем с нагнетателем.

Турбокомпрессоры

страдают (в большей или меньшей степени) так называемым турбонагнетателем (турбо-задержка, точнее, задержка наддува), при котором начальное ускорение с низких оборотов ограничено отсутствием достаточного массового расхода выхлопных газов ( давление). Как только число оборотов двигателя становится достаточным для увеличения числа оборотов турбины до расчетного рабочего диапазона, происходит быстрое увеличение мощности, поскольку более высокий турбонаддув вызывает большее количество выхлопных газов, что приводит к более быстрому вращению турбонагнетателя, что приводит к запоздалому «всплеску» ускорения. .Это значительно усложняет поддержание плавного увеличения числа оборотов с турбокомпрессорами, чем с нагнетателями с приводом от двигателя, которые применяют наддув прямо пропорционально числу оборотов двигателя. Основное преимущество двигателя с нагнетателем с механическим приводом — лучший отклик дроссельной заслонки, а также возможность мгновенно достичь полного давления наддува. Благодаря новейшей технологии турбонаддува и непосредственному впрыску бензина, реакция дроссельной заслонки на автомобилях с турбонаддувом почти такая же хорошая, как и у нагнетателей с механическим приводом, но существующее время задержки по-прежнему считается серьезным недостатком, особенно с учетом того, что подавляющее большинство нагнетателей с механическим приводом теперь работают со сцепленных шкивов, очень похоже на воздушный компрессор.

Турбонаддув был более популярен среди производителей автомобилей, чем нагнетатели, благодаря большей мощности и эффективности. Например, Mercedes-Benz и Mercedes-AMG ранее предлагали «Kompressor» в начале 2000-х годов, такие как C230K, C32 AMG и S55 AMG, но они отказались от этой технологии в пользу двигателей с турбонаддувом, выпущенных примерно в 2010 году, таких как C250. и S65 AMG biturbo. Тем не менее, Audi представила свой 3.0 TFSI V6 с наддувом в 2009 году для своих A6, S4 и Q7, в то время как Jaguar предлагает свой двигатель V8 с наддувом, доступный в качестве опции производительности для XJ, XF, XKR и F-Type, а также собственность Tata motors, а также Range Rover.

Twincharging

На чемпионатах мира по ралли 1985 и 1986 годов компания Lancia использовала модель Delta S4, которая включала в себя как нагнетатель с ременным приводом, так и турбонагнетатель с приводом от выхлопных газов. В конструкции использовалась сложная серия перепускных клапанов в системах впуска и выпуска, а также электромагнитная муфта, так что при низких оборотах двигателя наддув производился от нагнетателя. В середине диапазона оборотов наддув производился от обеих систем, в то время как на самых высоких оборотах система отключала привод от нагнетателя и изолировала соответствующий воздуховод. [12] Это было сделано в попытке использовать преимущества каждой из систем зарядки при устранении недостатков. В свою очередь, такой подход усложнил и повлиял на надежность автомобилей в соревнованиях WRC, а также увеличил вес вспомогательного оборудования двигателя в готовой конструкции.

Двигатель Volkswagen TSI (или Twincharger) представляет собой 1,4-литровый двигатель с прямым впрыском, который также использует как нагнетатель, так и турбонагнетатель.

Самолет

Высотные эффекты

Нагнетатели

являются естественным дополнением к поршневым двигателям самолетов, предназначенным для работы на больших высотах.Когда самолет набирает большую высоту, давление и плотность воздуха снижаются. Мощность поршневого двигателя падает из-за уменьшения массы воздуха, который может быть втянут в двигатель. Например, плотность воздуха на высоте 30 000 футов (9 100 м) составляет 1 3 от плотности воздуха на уровне моря, таким образом, только 1 3 из количества воздуха может быть втянуто в цилиндр, с достаточным количеством кислорода, чтобы обеспечить эффективное сгорание только одной трети топлива. Таким образом, на высоте 30 000 футов (9 100 м) только 1 3 топлива, сжигаемого на уровне моря, могут сгореть. [13] (Преимущество пониженной плотности воздуха состоит в том, что на планер приходится лишь около 1/3 аэродинамического сопротивления. Кроме того, снижается противодавление выхлопных газов. [14] С другой стороны, для удержания самолета в воздухе расходуется больше энергии, и меньше воздуха для создания подъемной силы.)

Нагнетатель можно рассматривать как искусственное увеличение плотности воздуха путем его сжатия или как нагнетание большего количества воздуха, чем обычно, в цилиндр каждый раз, когда поршень движется вниз. [13]

Нагнетатель сжимает воздух обратно до давления, эквивалентного уровню моря или даже выше, чтобы двигатель на крейсерской высоте вырабатывал такую ​​же мощность, как и на уровне моря. Благодаря уменьшенному аэродинамическому сопротивлению на большой высоте и номинальной мощности двигателя, самолет с наддувом может летать на высоте намного быстрее, чем безнаддувный. Пилот управляет мощностью нагнетателя с помощью дроссельной заслонки и косвенно через регулятор гребного винта.Поскольку размер нагнетателя выбран для создания заданного давления на большой высоте, нагнетатель слишком большой для малой высоты. Пилот должен быть осторожен с дроссельной заслонкой и следить за манометром в коллекторе, чтобы избежать перегрузки на малой высоте. По мере того, как самолет набирает высоту и плотность воздуха падает, пилот должен постоянно открывать дроссельную заслонку небольшими приращениями, чтобы поддерживать полную мощность. Высота, на которой дроссельная заслонка полностью открывается, а двигатель все еще вырабатывает полную номинальную мощность, известна как критическая высота . Выше критической высоты выходная мощность двигателя начнет падать по мере продолжения набора высоты самолетом.

Влияние температуры

Supercharger CDT против высоты . График показывает различия CDT между нагнетателем с постоянным наддувом и нагнетателем с регулируемым наддувом при использовании на самолете.

Как обсуждалось выше, наддув может вызвать скачок температуры, а экстремальные температуры вызовут детонацию топливно-воздушной смеси и повреждение двигателя.В случае с самолетом это вызывает проблемы на малых высотах, где воздух и плотнее, и теплее, чем на больших высотах. При высоких температурах окружающего воздуха может начаться детонация, когда манометр в коллекторе показывает намного ниже красной линии.

Нагнетатель, оптимизированный для работы на большой высоте, вызывает противоположную проблему на стороне впуска системы. Когда дроссельная заслонка установлена ​​с задержкой, чтобы избежать перегрузки, температура воздуха в карбюраторе может упасть достаточно низко, чтобы вызвать образование льда на дроссельной заслонке.Таким образом, может накопиться достаточно льда, чтобы вызвать отказ двигателя, даже если двигатель работает на полную номинальную мощность. По этой причине многие самолеты с наддувом оснащались датчиком температуры воздуха в карбюраторе или сигнальной лампой, предупреждающей пилота о возможных условиях обледенения.

Было разработано несколько решений этих проблем: промежуточные охладители и промежуточные охладители, впрыск антидетонанта, двухскоростные нагнетатели и двухступенчатые нагнетатели.

Двухскоростной и двухступенчатый нагнетатели

В 1930-х годах были разработаны двухскоростные приводы для нагнетателей.Это обеспечило большую гибкость в эксплуатации самолета, хотя и повлекло за собой большую сложность изготовления и обслуживания. Шестерни соединяли нагнетатель с двигателем с помощью системы гидравлических муфт, которые первоначально включались или выключались вручную пилотом с управлением в кабине. На малых высотах будет использоваться низкоскоростная передача, чтобы поддерживать низкие температуры коллектора. На высоте около 12 000 футов (3700 м), когда дроссель был полностью выдвинут вперед и давление в коллекторе начинало падать, пилот задерживал дроссель и переключался на более высокую передачу, а затем повторно настраивал дроссель до желаемого давления в коллекторе.Более поздние установки автоматизировали переключение передач по атмосферному давлению.

Еще одним усовершенствованием было использование двух компрессоров (также известных как ступени) последовательно, такие двухступенчатые нагнетатели всегда были двухскоростными. После того, как воздух был сжат в ступени низкого давления , воздух проходил через радиатор промежуточного охладителя, где он охлаждался перед повторным сжатием ступенью высокого давления , а затем, возможно, также доохлаждением в другом теплообменнике.Двухступенчатые компрессоры обеспечивали значительно улучшенные характеристики на большой высоте, примером которых являются Supermarine Spitfire Mk IX с двигателем Rolls-Royce Merlin и North American Mustang. В некоторых двухступенчатых системах заслонки заслонки открываются или закрываются пилотом, чтобы при необходимости обойти одну ступень. В некоторых системах было управление из кабины для открытия или закрытия заслонки промежуточного / дополнительного охладителя, что давало еще один способ контроля температуры. Двигатели Rolls-Royce Merlin имели полностью автоматизированное управление наддувом, и все, что нужно было сделать пилоту, — это увеличить дроссельную заслонку, система управления при необходимости ограничивала наддув до достижения максимальной высоты.

Турбонаддув

Основная статья: Турбокомпрессор

Нагнетатель с механическим приводом должен получать мощность привода от двигателя. Взяв, например, одноступенчатый односкоростной двигатель с наддувом, такой как Rolls-Royce Merlin, нагнетатель потребляет около 150 л.с. (110 кВт). Без нагнетателя двигатель мог бы производить около 750 лошадиных сил (560 киловатт), но с нагнетателем он вырабатывал около 1000 л.с. (750 кВт), то есть примерно на 400 л.с. (750 — 150 + 400 = 1000 л.с.), или чистый прирост 250 л.с. (190 кВт).Именно здесь становится очевидным главный недостаток нагнетателя. Двигатель должен сжигать дополнительное топливо, чтобы обеспечить мощность для привода нагнетателя. Повышенная плотность воздуха во время входного цикла увеличивает удельную мощность двигателя и его удельную мощность, но за счет увеличения удельного расхода топлива двигателем. Помимо увеличения стоимости эксплуатации самолета, это может снизить общую дальность полета. С другой стороны, с большей мощностью двигателя самолет может перевозить больше топлива.В военных типах это часто делалось с использованием внешних подвесных танков, например, в американских истребителях P-38 Lightning, P-47 Thunderbolt, P-51 Mustang и F6F Hellcat.

С внешними топливными баками и двигателями с наддувом или с турбонаддувом P-38 и P-51 могли летать из Англии в Берлин и обратно, P-47 мог летать из Англии в Рур и обратно, а у F6F был самый длинный дальность действия любого истребителя на базе авианосцев войны. Кроме того, P-51 мог лететь еще дальше — от Иводзимы до Токио и обратно.Эти дальности были намного больше, чем у любых нацистских немецких, британских, японских, канадских или советских истребителей времен Второй мировой войны. Эти американские истребители также обладали отличными боевыми качествами на больших высотах.

В отличие от нагнетателя, приводимого в действие самим двигателем, турбонагнетатель приводится в действие выхлопными газами двигателей. Количество мощности в газе пропорционально разнице между давлением выхлопных газов и давлением воздуха, и эта разница увеличивается с высотой, помогая двигателю с турбонаддувом компенсировать изменение высоты.

В большинстве высотных авиационных двигателей, использовавшихся во время Второй мировой войны, использовались нагнетатели с механическим приводом, поскольку они имели три значительных производственных преимущества перед турбокомпрессорами. Турбокомпрессоры — используемые в крупных американских авиадвигателях, таких как Allison V-1710 (используется в P-38) и Pratt & Whitney R-2800, требовали дополнительных трубопроводов из дорогих жаропрочных металлических сплавов в газовой турбине и предтурбинной части газовой турбины. выхлопная система, но они очень пригодились в высотных бомбардировщиках и некоторых истребителях.Один только размер воздуховода был серьезной проблемой. Например, и F4U Corsair, и P-47 Thunderbolt использовали один и тот же многоцилиндровый радиальный двигатель, но большой бочкообразный фюзеляж P-47 был необходим из-за количества воздуховодов к турбонагнетателю и от него в задней части фюзеляжа. В F4U использовался двухступенчатый нагнетатель с компактной компоновкой промежуточного охладителя.

Поршневые двигатели с турбонаддувом также подчиняются многим из тех же эксплуатационных ограничений, что и газотурбинные двигатели.Двигатели с турбонаддувом также требуют частых проверок их турбонагнетателей и выхлопных систем на предмет возможных повреждений, вызванных чрезмерным нагревом и давлением турбокомпрессоров. Такие повреждения были серьезной проблемой для ранних моделей американских высотных бомбардировщиков B-29 Superfortress, которые использовались на Тихоокеанском театре военных действий в 1944–45.

Поршневые двигатели с турбонаддувом продолжали использоваться на большом количестве послевоенных самолетов, таких как B-50 Superfortress, KC-97 Stratofreighter, Boeing Stratoliner, Lockheed Constellation и C-124 Globemaster II.

В последнее время большинство авиационных двигателей для авиации общего назначения (легкие самолеты) являются безнаддувными, но в меньшем количестве современных авиационных поршневых двигателей, предназначенных для работы на больших высотах, используются системы турбонаддува или турбонагнетателя вместо нагнетателя, приводимого в действие кривошипом. валы. Изменение мышления во многом связано с экономикой. Когда-то авиационный бензин был в изобилии и дешев, в пользу простого, но прожорливого нагнетателя. По мере роста стоимости топлива обычный нагнетатель вышел из моды.Кроме того, в зависимости от того, какой фактор денежной инфляции используется, затраты на топливо не уменьшаются так быстро, как затраты на производство и техническое обслуживание.

Влияние октанового числа топлива

До конца 1920-х годов все автомобильное и авиационное топливо обычно оценивалось с октановым числом 87 или меньше. Это рейтинг, который был достигнут простой перегонкой «легкой сырой» нефти. Двигатели со всего мира были разработаны для работы с этим сортом топлива, что устанавливает предел количества наддува, который может обеспечивать нагнетатель, при сохранении разумной степени сжатия.

Повышение октанового числа с помощью добавок было направлением исследований в то время. Используя эти методы, из менее ценной сырой нефти можно было бы по-прежнему поставлять большие количества полезного бензина, что делало этот процесс ценным экономическим процессом. Однако добавки не ограничивались превращением некачественного масла в 87-октановый бензин; те же добавки можно было бы использовать для повышения октанового числа бензина до гораздо более высокого октанового числа.

Топливо с более высоким октановым числом противостоит самовоспламенению и детонации лучше, чем топливо с низким октановым числом.В результате количество наддува, обеспечиваемое нагнетателями, может быть увеличено, что приведет к увеличению мощности двигателя. Разработка 100-октанового авиационного топлива, впервые начатая в США перед войной, позволила использовать более высокие давления наддува на высокоэффективных авиационных двигателях и использовалась для получения чрезвычайно высокой выходной мощности — на короткие периоды — в несколько самолетов довоенного рекорда скорости. Эксплуатационное использование нового топлива во время Второй мировой войны началось в начале 1940 года, когда 100-октановое топливо было доставлено британским Королевским военно-воздушным силам с нефтеперерабатывающих заводов в Америке и Ост-Индии. [15] Немецкая Люфтваффе также имела запасы аналогичного топлива. [16] [17]

Повышение предела детонации существующих авиационных топлив стало основным направлением развития авиационных двигателей во время Второй мировой войны. К концу войны топливо поставлялось с номинальным октановым числом 150, на котором использовались авиационные двигатели поздних времен, такие как Rolls-Royce Merlin 66 [18] [19] или Daimler-Benz DB 605DC. развивал аж 2000 л.с. (1500 кВт). [20] [21]

См. Также

Банкноты

  1. «»» Турбонагнетатель и силовая установка самолета «»». Rwebs.net. 1943-12-30. Проверено 3 августа 2010.
  2. Ян Макнил, изд. (1990). Энциклопедия истории техники . Лондон: Рутледж. С. 315–321. ISBN 0-203-19211-7 .
  3. «Забытый герой: человек, который изобрел двухтактный двигатель». Дэвид Бутройд, VU . Архивировано 15 декабря 2004 г. Получено 19 января 2005 г.
  4. Георгано, Г. (1982). Новая энциклопедия легковых автомобилей с 1885 г. по настоящее время (изд. 3. Изд.). Нью-Йорк: Даттон. п. 415. ISBN 0-525-93254-2 .
  5. «ТЕХНОЛОГИЯ — Нагнетатели Whipple». whipplesuperchargers.com . Проверено 23 октября 2015.
  6. ↑ Двухвинтовой против центробежного наддува Kenne Bell
  7. «Mercedes 1923 6/25/40 hq». mercedes-benz-classic.com/content . Проверено 21 января 2009.
  8. «Готлиб Даймлер, Вильгельм Майбах и« Дедушкины часы »». benzinsider.com/2008 . Проверено 21 января 2009.
  9. «1923 Миллер 122 с наддувом». sportscarmarket.com . Проверено 21 января 2009.
  10. «История автомобилей Sunbeam». rootes-chrysler.co.uk . Проверено 21 января 2009.
  11. «Автомобили Делаж, Курбевуа-сюр-Сен». kolumbus.fi/leif.snellman . Проверено 21 января 2009.
  12. «D&W Performance Air Induction — Performance Products для повышения производительности автомобиля». Dwperformance.com.Проверено 4 марта 2014.
  13. 13,0 13,1 Смоллвуд 1995, стр.133.
  14. ↑ Northrop 1955, с.111
  15. ↑ Пэйтон-Смит 1971, стр. 259–260.
  16. ↑ Манкау и Петрик 2001, стр. 24–29.
  17. ↑ Griehl 1999, стр. 8.
  18. ↑ Прайс, 1982. с. 170.
  19. ↑ Berger & Street, 1994. стр. 199
  20. ↑ Мермет 1999, стр. 14–17.
  21. ↑ Мермет 1999, с.48.

Список литературы

  • Белый, Грэм. Авиационные поршневые двигатели союзников времен Второй мировой войны: история и развитие фронтовых авиационных поршневых двигателей, произведенных Великобританией и США во время Второй мировой войны . Уоррендейл, Пенсильвания: Общество автомобильных инженеров, Инк .; Шрусбери, Англия: Эйрлайф Паблишинг Лтд .; 1995. ISBN 1-56091-655-9, ISBN 1-85310-734-4.

Внешние ссылки

.

50cc нагнетатель | S-зарядное устройство

Наш нагнетатель может увеличить ускорение вашего мотоцикла на 100%. Блок нагнетателя сжимает и нагнетает воздух в двигатель. С увеличенной подачей воздуха можно использовать больше топлива для улучшения ускорения. Разгон можно увеличить вдвое. Усовершенствованное ускорение обеспечит мотоциклу лучшую маневренность, особенно в экстремальных дорожных условиях.

Общий вид 50-кубового нагнетателя

Page-04-OPP-100-mass-manuf-01_t290
Page-04-Superch-3D-with-positions-01_t290

Нагнетатель 50 см3 (в сборе)
Компрессор: Пластинчатый
Вес: 2.9 кг,
Рабочий диапазон оборотов: 500… 10 000
Макс.об / мин (продолж.): 10 000
Макс. Число оборотов (мгновенно): 12 500 об / мин (в течение 60 секунд)
Макс.давление наддува: 1,2 бар (17,5 фунт / кв. )

Сборка нагнетателя:

  • воздушный компрессор,
  • бачок-накопитель
  • газообменная установка,
  • ведущий шкив

Наши инновации

  1. Наш нагнетатель был разработан и оптимизирован специально для 4-тактных двигателей объемом 50 куб. См.
  2. Для двигателя работать с нашим нагнетателем вполне безопасно, так как подача воздуха происходит в оптимальном режиме.
  3. Наш нагнетатель состоит из воздушного компрессора, бака для наддува и газообменной установки, обеспечивающей стабильную работу небольшого транспортного средства в различных режимах работы.
  4. Хорошо известная конструкция нагнетателя адаптирована для небольших двигателей.
  5. Мы разработали специальный блок, обеспечивающий адекватный газообмен при всех разрешенных оборотах двигателя.
  6. Мы разработали механический блок управления без какой-либо электроники, поэтому его стоимость изготовления очень низкая.

Результаты испытаний на ускорение и сравнительная диаграмма

Page-04-Stock-vs-Superchrged_t290 Page-04-Stock-vs-Supercharged-table_t290

Для оценки полученных данных по динамике разгона мы провели множество экспериментов. Большинство из них — иметь разгонно-скоростные характеристики на стоковых и наддувных моделях. Здесь показаны наиболее распространенные результаты. Как видно из диаграммы, мотоцикл с наддувом имеет время разгона 8.5 секунд, чтобы достичь скорости 50 километров в час. Время разгона стоковой модели до такой же скорости составляет 14,5 секунды. Таким образом, время достижения максимально допустимой скорости для мотоцикла с наддувом на 40% меньше, чем для стандартного мотоцикла без наддува. 50 километров в час — это максимальная скорость целевого мотоцикла, разрешенная технической спецификацией.

График производительности лопастного компрессора объемом 50 куб. См

Page-04-SAE-2013----50cc---mod_sliding_t700

Графики производительности нагнетателя по воздуху прогнозируются и фактически предоставляются при различных значениях противодавления от 0.От 0 бар (без противодавления) до 0,8 бар.
Значения расхода воздуха нагнетателем при противодавлении представлены почти прямыми линиями. Эта особенность наблюдалась на всех наших компрессорах лопастного типа собственного производства.

Диаграмма производительности двигателя

50 куб.см с нагнетателем

Page-04-50cc-ICE-Kit-Prod-Chart_t700

На этой диаграмме показаны теоретическая и фактическая мощность нагнетателя при различных противодавлениях, а также теоретические и фактические кривые расхода воздуха двигателем мотоцикла.

Проекция точки пересечения точек значений противодавления в камере статического давления при заданных (выбранных) оборотах на оси Y показывает фактический расход воздуха двигателем при выбранных оборотах. В результате проведения многочисленных испытаний мы определили оптимальное противодавление при определенных оборотах двигателя, а именно: 0,4 бар при 4000 об / мин, 0,6 бар при 6000 об / мин и 0,8 бар при 8000 об / мин. Сравнения показывают общие параметры автомобиля, особенно его разгонные характеристики, надежность и другие, менее важные, представленные на диаграммах значения резервного давления оптимальны.

Мы также протестировали другие варианты противодавления, например: 0,3 бар при 4000 об / мин, 0,4 бар при 6000 об / мин и 0,55 бар при 8000 об / мин и даже максимально возможное с нашей точки зрения: 0,6 бар при 4000 об / мин, 0,8 бар при 6000 об / мин и 1,0 бар при 8000 об / мин.

Зависимость давления наддува от оборотов двигателя при различных передаточных числах шкивов.

Page-04-boost-pressure-vs-pulley-ratio_t220

Диаграмма показаний противодавления внутри бака наддува характеризует «качество» комплекта нагнетателя, например: его способность перезаряжать целевой двигатель мотоцикла для достижения заданных параметров.На этой диаграмме также показано соответствие мощности нагнетателя и двигателя при разных оборотах.

Нагнетатель и манометр

Наше видео на домашней странице демонстрирует показания противодавления в камере статического давления на манометре. Очень важно то, что показания могут быть получены при полностью открытой дроссельной заслонке.

Обороты двигателя Давление наддува
Бар фунтов / кв. Дюйм
3 000 0.3 4,4
4 000 0,4 5,8
6 000 0,6 8,7
8,000 0,8 11,6
9 000 0,9 13,1
10 000 1,0 14,5

Было много споров, стоит ли оснащать комплект воздушным манометром. Практика и многочисленные дорожные испытания показали, что манометр, подобный спидометру, стал неотъемлемой частью мотоцикла.В конечном итоге оператор связывает показания спидометра с показаниями манометра и интуитивно определяет наиболее подходящий режим движения в данных дорожных условиях. Хотя воздушный манометр не входит в число штатных элементов комплекта, мы настоятельно рекомендуем его устанавливать на мотоцикл с наддувом. Разъем для индикатора давления поставляется с каждой конструкцией бака-накопителя наддува. Также рекомендуем манометр со шкалой: -1Бар… + 1,6Бар

.

Эксплуатационные характеристики

Рекомендуемое передаточное число шкива

Рекомендуемое передаточное число шкива составляет 1: 1.
Конструкция нагнетателя предполагает, что необходимое количество воздуха подается при передаточном числе шкива 1: 1 и при 8 500 об / мин, что максимально разрешено техническим сертификатом.
Допустимое передаточное число шкива до 1: 1,3
Конструкция нагнетателя допускает небольшое кратковременное увеличение числа оборотов, например, до 12 500 на пике в течение 60 секунд. Обеспечивает кратковременное увеличение подачи воздуха. Однако это также опасно из-за быстрого перегрева двигателя. Мы рекомендуем использовать термометр двигателя под свечой зажигания и контролировать температуру, чтобы убедиться, что она меньше 180 °.В противном случае пара цилиндр-поршень может выйти из строя.

Шкив вращения

Обратите внимание, что ведущий шкив вращается против часовой стрелки.

Ремень привода нагнетателя

Используется ремень соответствующей длины из стандартного Z-профиля с верхней шириной (10 мм) и высотой (6 мм).
Подробнее см. Ссылку ниже: Клиновой ремень

Рекомендуемая температура

Температура эксплуатации модифицированного мотоцикла от 10 ° C до 40 ° C.

Топливо

Топливо, рекомендованное для модифицированного мотоцикла, имеет октановое число 95, так как высокое октановое число предотвращает возможную детонацию.

Диаметр карбюратора и главного жиклера

Чтобы получить правильное стехиометрическое соотношение для топливно-воздушной смеси, нам необходимо заменить стандартный жиклер на струю большего диаметра, чтобы согласовать большую подачу воздуха с большей подачей топлива.

Исходный диаметр жиклера двигателя Z50 / AB27 составляет от 0,58 мм до 0,62 мм (в зависимости от исполнения). Во время установки нагнетателя мы рекомендуем (1) оставить оригинальный карбюратор и (2) заменить главный жиклер на другой большего диаметра.Оптимальный диаметр главного жиклера для мотоцикла с наддувом — 0,76 мм. В этом случае исключаются задержка и сбой при резком изменении оператором положения рычага газа. Вы также можете провести очень простой эксперимент, чтобы определить подходящий диаметр струи в пределах от 0,72 мм до 0,80 мм.
Обычно комплекты струй поставляются с шагом 0,02 мм их внутреннего диаметра.

При замене жиклера может потребоваться серьезная настройка после установки, чтобы определить оптимальный диаметр жиклера.Мы думаем о простом методе выбора струи. Полностью подробный метод будет предоставлен операторам мотоциклов с наддувом на нашем веб-сайте.

.

Бензиновый двигатель | Британника

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением от электрической искры. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, малые грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные установки среднего размера, осветительные установки и т. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.

Поперечный разрез V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое при сгорании бензина, создает силу на головке поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.

бензиновые двигатели Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.

Типовая схема поршневой цилиндр бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов рекуперации энергии процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания: четырехтактный цикл Двигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Недостатком четырехтактного цикла является то, что завершается только половина тактов мощности по сравнению с двухтактным циклом ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и перезагрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *