Гидрокомпенсаторы что такое: Гидрокомпенсаторы: что это такое и почему они стучат

Содержание

Гидрокомпенсаторы в двигателе: что это?

Прогрев бензинового или дизельного двигателя и последующий выход мотора на рабочие температуры приводит к параллельному нагреву всех механизмов силовой установки. Сильный нагрев теплонагруженных узлов означает закономерное тепловое расширение деталей, в результате чего происходит изменение зазоров между элементами конструкции.

Что касается ГРМ, точные зазоры предельно важны для нормального функционирования механизма газораспределения, так как от четкости работы впускных и выпускных клапанов напрямую зависит эффективность ДВС. Конструкция клапанного механизма на разных моторах может предполагать как ручную регулировку указанного теплового зазора, так и автоматическую подстройку при помощи гидрокомпенсаторов.

Рекомендуем также прочитать статью об устройстве гидрокомпенсатора. Из этой статьи вы узнаете о конструктивных особенностях и принципах работы указанной детали ГРМ.

Содержание статьи

Необходимость регулировки теплового зазора клапанов

Работа клапанного механизма происходит в крайне тяжелых условиях. К таковым относят постоянные ударные нагрузки и большую теплонагруженность. Также стоит отметить, что нагрев деталей ГРМ отличается значительной неравномерностью, а сам клапанный механизм постоянно страдает от естественного износа.

Нормальное открытие и закрытие клапанов в условиях высоких температур обеспечивается благодаря наличию обязательного термического зазора. Такие зазоры для впускных и выпускных клапанов отличаются, так как выпускные клапаны нагреваются намного сильнее впускных от контакта с раскаленными отработавшими газами. На большинстве легковых авто зачастую показатель величины зазора на впускных клапанах находится на приблизительной отметке 0,15-0,25 мм. Для выпускных клапанов данный показатель составляет в среднем 0,2-0,35 мм и более.

Выставленные зазоры клапанов могут постепенно сбиваться в результате естественного износа механизма, после проведения ремонта ДВС и т.д.

Зазоры, отличные от допустимой нормы в большую или меньшую сторону, вызывают ускоренный износ ГРМ. Появляется стук клапанов, наблюдается падение мощности агрегата и перерасход топлива. Токсичность выхлопа сильно увеличивается, из строя быстро выходят катализаторы и сажевые фильтры.

Увеличенный и уменьшенный зазор: последствия

Недостаточный зазор впускного клапана (клапана зажаты) не позволяет осуществить полное закрытие. Перетянутые впускные клапана в бензиновом двигателе приведут к тому, что топливно-воздушная смесь будет частично гореть во впуске. Запуск двигателя в этом случае осложняется, агрегат не развивает мощность, потребляет много горючего и т.д.

Для выпускных клапанов последствия неправильной регулировки намного серьезнее. Горячие газы из камеры сгорания будут прорываться через неплотности, вызывая прогар тарелки клапана и разрушение седла клапана. Недостаточное прилегание клапанов в дизеле может привести к значительному падению компрессии, что не позволит далее нормально эксплуатировать дизельный мотор.

Большой зазор вызывает сильные ударные нагрузки, в результате чего будет слышен резкий и частый металлический стук в области клапанной крышки, который нарастает с увеличением оборотов. В этом случае ускоряется износ механизма клапанов, распредвала и других элементов ГРМ. Если клапана не открываются полностью, тогда проходное сечение уменьшается. Это означает, что цилиндры хуже наполняются топливной смесью (воздухом в дизельном ДВС) и плохо вентилируются. Мощность двигателя при этом сильно снижается, содержание вредных веществ в отработавших газах растет.

Вполне очевидно, что от правильно отрегулированных клапанов будут зависеть не только важнейшие эксплуатационные показатели силового агрегата, но и его общий моторесурс. Ручная регулировка теплового зазора клапанов является плановой процедурой, реализуется при помощи щупа, регулировочных шайб и рычагов, а также требует определенных навыков. Осуществляется такая подстройка каждые 10-15 тыс. километров. Дополнительной сложностью ручной регулировки является то, что для достижения «мягкой» работы ГРМ клапана необходимо регулировать с учетом различных температурных колебаний, а не по среднему значению. Во многих автосервисах этого не делают.

С учетом указанных сложностей в конструкции ГРМ стали применяться так называемые гидрокомпенсаторы, которые выбирают необходимый зазор автоматически.

Благодаря этому решению необходимость настраивать клапана вручную полностью исключена. Гидрокомпенсаторы теплового зазора клапанов представляют собой деталь ГРМ, которая способна самостоятельно изменять свою длину на такую величину, равную тепловому зазору.

Преимущества и недостатки использования гидрокомпенсаторов

Использование компенсаторов в устройстве клапанного механизма позволило значительно смягчить его работу, минимизировать ударные нагрузки и убрать лишний шум. Уменьшился износ деталей ГРМ, фазы газораспределения стали более точными, что увеличило ресурс двигателя, его мощность и крутящий момент. К недостаткам внедрения гидрокомпенсаторов относят появление особых требований к эксплуатации ДВС, а также определенные нюансы в момент холодного пуска.

Конструктивно рабочей жидкостью для компенсаторов выступает моторное масло. В первые секунды после запуска мотора давление в системе смазки практически отсутствует, а работа компенсаторов в этот момент сопровождается характерным стуком. Гидрокомпенсаторы стучат «на холодную» особенно сильно, с прогревом шум пропадает.

Зависимость общего срока службы компенсаторов от давления в системе смазки и качества моторного масла определяет их повышенную чувствительность к смазочному материалу.

Для нормальной работы ГРМ с гидрокомпенсаторами необходимо с особым вниманием относиться к вопросу подбора и замены моторного масла.  Плунжерная пара компенсаторов имеет минимальные зазоры, которые могут с легкостью засориться при несвоевременной замене масла и масляного фильтра, в результате  использования не подходящей по допускам смазки, масел низкого качества и т.д.

Для ГРМ с гидрокомпенсаторами оптимально использовать маловязкие полусинтетические и синтетические масла SAE 0W30, 5W30, 10W30 и т.д. Использование масел с повышенной вязкостью SAE 15W40 и других в моторах с компенсаторами не рекомендовано.

Читайте также

Гидрокомпенсатор — что это | АВТОЧАС

Гидрокомпенсатор представляет собой маленькую деталь в автомобильном двигателе, обычно незаметную. Однако в случае неисправности данной детали происходит ухудшение технических параметров двигателя и возникает громкий стук под капотом. Что такое гидрокомпенсатор, какова его роль в работе мотора, как проводится ремонт этой детали?

Место размещения и функции

Отыскать гидрокомпенсатор в двигателе машины довольно трудно. Это требует знания устройства этого самого двигателя. Верхняя часть силового агрегата является местом расположения головки, которая прикрывает блок цилиндров. В ней происходит вращение распределительного вала, представляющего собой ось, имеющую маленькие выступы — кулачки.

Под этими кулачками находятся гидрокомпенсаторы. Необходимо, чтобы выступ нажимал на клапаны, находящиеся в цилиндрах. Но длина этих клапанов определяется температурой и представляет собой непостоянную величину. Для постоянного срабатывания клапана на необходимом этапе цикла автомобильного двигателя нужно, чтобы постоянно был зазор, разделяющий распределительный вал и ножку клапана.

Ранее изменение размеров клапана компенсировали пятки. Изнашиваясь, зазор становился больше. Кулачок в закрытой позиции недостаточно герметично соприкасался с шайбой, что приводило к хорошо слышному удару. По этой причине такая неприятность обозначалась формулировкой «стучат клапаны». Чтобы устранить эту неисправность, требовалось выполнение регулировки клапанов. Это сложный процесс, для которого нужна квалификация.

Но регулировка клапанов всё равно была не идеальной, поскольку геометрические характеристики ножки клапана имели определённые различия при разных температурах металла. Чтобы устранить вышеописанную проблему, были созданы гидрокомпенсаторы. Гидрокомпенсатор — это герметичный цилиндр, который наполнен маслом. Распределительный вал имеет кулачок, действующий на верхнюю половину цилиндра, передающего усилие на ножку клапана. Абсолютно исправная деталь даёт возможность освободиться от необходимости регулировать зазор клапанов на протяжении всего периода использования силового агрегата.

%rtb-4%

Плюсы и минусы гидрокомпенсатора

Преимущества применения этих деталей следующие:

  • Гидрокомпенсатор не нуждается в техническом обслуживании, время его эксплуатации сравнимо со временем эксплуатации самого двигателя.
  • Гидрокомпенсатор продлевает период эксплуатации механизма газораспределения (включающего клапаны, распределительный вал и ряд других деталей).
  • Гидрокомпенсатор плотно прижимает кулачок к клапану, увеличивая мощность мотора.
  • Применение этой детали приводит к уменьшению расхода бензина.
  • Снижается шум, порождаемый работой мотора.

Но имеются также недостатки. Прежде всего к ним относится сложность конструкции. В случае неисправности гидрокомпенсатора ремонт его будет стоить дороже, чем регулирование зазора клапанов. Также его недостатком является возможность засора. В цилиндр может проникнуть грязь, что ведёт к повышению шума во время работы механизма газораспределения. Ограничением является необходимость использования только высококачественного масла. Применение недорогого смазочного материала приведёт к быстрому выходу из строя и необходимости полной замены гидрокомпенсатора.

Работа гидрокомпенсаторов

Гидрокомпенсатор является устройством, предназначенным для автоматического устранения проблем, связанных с закрытием клапанов механизма газораспределения. Наличие в современных автомобильных двигателях гидрокомпенсаторов позволяет автомобилистам не регулировать клапаны постоянно. Гидрокомпенсатор даёт возможность закрывать клапаны, не создавая необходимости в обслуживании и вообще каком-то вмешательстве человека. Сущность его работы состоит в том, что изменение теплового зазора приводит к дожиманию гидрокомпенсатором клапана до необходимого положения.

Гидрокомпенсатор состоит из плунжерной пары и шарикового клапана, по которому происходит поступление масла в гидрокомпенсатор. Масло является едва ли не основным компонентом работы гидрокомпенсатора. Очень низкий коэффициент сжатия масла приводит к тому, что давление этого масла вместе с усилием плунжерной пружины становятся главными факторами работы гидрокомпенсатора.

Продление срока эксплуатации гидрокомпенсаторов

Время службы гидрокомпенсатора в автомобильном моторе почти не связано с правильностью действий водителя и другими субъективными факторами. Однако имеется одно условие, способное значительно увеличить время эксплуатации гидрокомпенсаторов, а также других деталей двигателя. Применение высококачественного масла, а также своевременность его замены значительно увеличивают шансы для автомобильного мотора проработать без значительного ремонта минимум 100 000 км.

Низкокачественное масло забивает клапан гидрокомпенсатора. Плунжерная пара изнашивается по причине либо дефицита масла, либо низкого качества этого масла. Потому многое определяется моторным маслом — его качеством. Следует менять масло почаще, не экономя на дешёвых марках, т. к. ремонт стоит намного дороже.

Неисправности гидрокомпенсаторов

Что делают гидрокомпенсаторы в двигателе

Гидрокомпенсаторы. Что это и почему они стучат

Гидрокомпенсатор, он же гидротолкатель предназначен для автоматической регулировки тепловых зазоров клапанов двигателя. В ходе эксплуатации автомобиля можно слышать постукивание двигателя, говорят это стучат гидрокомпенсаторы. А Вы знаете причины этой неисправности и как с ней бороться?

Для работы гидрокомпенсаторов необходима постоянная подача масла под давлением. Для этого в головке цилиндров имеется канал с обратным шариковым клапаном (он предотвращает слив масла из каналов после остановки двигателя), а также каналы на нижней плоскости корпуса подшипников (они же подводят масло и к шейкам распределительных валов).

Гидрокомпенсаторы весьма чувствительны к качеству масла и его чистоте. При наличии в масле механических примесей возможен быстрый выход из строя плунжерной пары гидрокомпенсатора, что сопровождается повышенным шумом в газораспределительном механизме и интенсивным износом кулачков распределительного вала. Неисправный гидрокомпенсатор ремонту не подлежит, его следует заменить. Если после замены стучат новые гидрокомпенсаторы — это нормально, но только непродолжительное время. Если стук не прекращается — следует определить причину.

Как определить, какой стучит гидрокомпенсатор?

Чтобы проверить гидрокомпенсатор необходимо нажать на него выколоткой из мягкого металла или отверткой (при этом кулачок распредвала должен быть обращен к толкателю «затылком»).

В нормальном состоянии гидротолкатель должен прожиматься со значительным усилием. Если же усилие невелико, гидротолкатель необходимо заменить.

Установите поочередно кулачки распредвала выступами вверх и проверьте наличие зазора между толкателями и кулачками. Утапливая (например, деревянным клином) проверяемый гидротолкатель, сравните скорость его перемещения с остальными. При наличии зазора или повышенной скорости перемещения разберите гидрокомпенсатор и очистите его детали от загрязнений или замените гидрокомпенсатор.

Почему стучат гидрокомпенсаторы .

●Если стучат гидрокомпенсаторы при запуске :

Причина неисправности — вытекание масла из части гидрокомпенсаторов во время длительной стоянки.

Способ устранения — шум, исчезающий спустя несколько секунд после пуска двигателя, не является признаком неисправности, так как из части гидрокомпенсаторов, находившихся под нагрузкой клапанных пружин открытых клапанов (каналы подачи масла остались открытыми), вытекло масло, недостаток которого восполняется в начале работы двигателя.

●Стучат гидрокомпенсаторы на холодную и горячую, шум исчезает при повышении оборотов :

Причина неисправности — повреждение или износ шарика обратного клапана.
Загрязнение механизма гидрокомпенсатора продуктами износа при несвоевременной замене масла или его низком качестве.

Способ устранения — замените гидрокомпенсатор.

Очистите детали механизма от загрязнений. Применяйте масло, рекомендуемое в руководстве по эксплуатации.

●Стучат гидрокомпенсаторы на горячую, стук пропадает после повышения оборотов. На остывшем двигателе проблем нет :

Причина неисправности — перетекание масла через увеличенные вследствие износа зазоры между плунжером и гильзой гидрокомпенсатора.

Способ устранения — замените изношенный гидрокомпенсатор в сборе

●Гидрокомпенсаторы стучат на высоких оборотах, а на малых стука нет :

Причина неисправности — вспенивание при избытке масла (выше верхней метки на щупе) в масляном картере из-за его взбалтывания коленвалом. Попадание воздушно-пенной масляной смеси в гидрокомпенсаторы нарушает их работу.
Засасывание воздуха масляным насосом при чрезмерно низком уровне масла в масляном картере.

Повреждение маслоприемника из-за деформации масляного картера при ударе о дорожное препятствие.

Способ устранения — доведите уровень масла в масляном картере до нормы.
Доведите уровень масла в масляном картере до нормы.
Отремонтируйте или замените дефектные детали.

●Постоянный шум одного или нескольких клапанов, не зависящий от частоты вращения коленчатого вала :

Причина неисправности — возникновение зазора между толкателем и кулачком распредвала из-за повреждения или загрязнения деталей гидрокомпенсатора.

Снимите крышку ГБЦ, установите поочередно кулачки распредвала выступами вверх и проверьте наличие зазора между толкателями и кулачками. Утапливая (например, деревянным клином) проверяемый гидротолкатель, сравните скорость его перемещения с остальными. При наличии зазора или повышенной скорости перемещения разберите гидрокомпенсатор и очистите его детали от загрязнений или замените гидрокомпенсатор.

Заключение

Чаще всего гидрокомпенсаторы стучат из-за недостаточного уровня масла или его низкого качества. Не спешите разбирать двигатель и искать причину, попробуйте просто заменить масло на на рекомендуемое производителем. Еще один вопрос, который волнует многих, это «можно ли ездить если стучат гидрокомпенсаторы?». Ответ: можно.

Понравилась статья?

Ставь лайк и подписывайся на канал !

Так ты будешь получать больше интересной и полезной информации.

Источник

Что такое гидрокомпенсатор? Почему они стучат?

Гидрокомпенсаторы – это устройства использующие давление масла для автоматической регулировки зазоров между клапанами и распределительными валами.

По мере прогрева двигателя, детали ГРМ также нагреваются, что ведет к их тепловому расширению, а следовательно изменению зазоров между ними. Не правильная регулировка зазоров, а именно выставление очень маленького зазора может привести к не плотному закрытию клапана, что вызовет его прогорание или стуки в системе ГРМ при выставлении слишком большого зазора. К тому же этот зазор изменяется в процессе эксплуатации двигателя вследствие износа.

Так как регулировка зазора клапанов является довольно сложным и ответственным мероприятием, на смену рычагам и шайбам, которые требуют регулировки, пришли гидрокомпенсаторы которые автоматически выбирают зазор и при этом, не требуется никаких дополнительных настроек.

Устройство гидрокомпенсатора (Рис 1).

Кулачек не давит на гидрокомпенсатор. За счет действия пружины 11 и плунжерной пары 3 и 4 происходит перемещение плунжера вместе с телом гидрокомпенсатора, пока вся конструкция не упрется в кулачек распредвала, тем самым убирая зазор. Когда масляный канал гидрокомпенсатора 9 и головки 10 станут на одном уровни, то масло под давлением подается во внутрь компенсатора. Далее через выемку 2 и клапан 8 попадает во внутрь плунжерной пары. Следующим этапом является надавливание кулачка распредвала на компенсатор.

Кулачек давит на гидрокомпенсатор. Внутри плунжерной пары создается давление, которым запирается шариковый клапан 8. Так как у масла маленький коэффициент сжатия, получается, что гидрокомпенсатор выступает как жесткий элемент между распредвалом и клапаном. Получается, что кулачек распредвала давит на компенсатор, а он в свою очередь открывает клапан. В процессе сдавливания гидрокомпенсатора из плунжерной пары через клапан выдавливается небольшое количество масла, прежде чем шарик полностью преградит дорогу маслу. Таким образом, вновь образуется зазор, который при следующем проворачивании распредвала на 180 градусов исчезнет за счет пружины плунжерной пары и новой закачанной в него порции масла. В этом заключается работа гидрокомпенсатора, что, не смотря на температуру двигателя (присутствует или нет тепловое расширение деталей), гидрокомпенсатор всегда подбирает необходимый зазор. На протяжении всего срока службы не требует дополнительных вмешательств и проведения, каких-либо настроек.

Почему гидрокомпенсатор может стучать?

Не каждое возникновение стука должно вызывать панику. Если стук возникает на холодном ходу, а через небольшой промежуток времени исчезает, можно не предпринимать никаких действий. К сожалению, если стук продолжает тревожить даже после того как двигатель успел прогреться, значит, проблема, действительно, существует, и её нужно устранять. Одной из причин тревожного стука является износ клапанов, кулачков распределительного вала, плунжерной пары. Также вызвать стук может некачественное масло, провоцирующее выход из строя гидрокомпенсаторов, а вместе с этим и стук. Если продолжить игнорировать такую техническую проблему, спустя небольшой промежуток времени можно столкнуться с зависанием клапанов, а также с серьёзным сбоем газораспределительного механизма.

Источник

Гидрокомпенсаторы как работают и что это такое – просто о сложном

Сегодня подробно разберем, что такое гидрокомпенсаторы и как они работают. Посмотрим это на наглядном примере. Попробую объяснить их устройство и назначение в автомобиле.

Что это такое

Внутри двигателя есть газораспределительный механизм, который отвечает за степень и скорость открытия впускных и выпускных клапанов. Сами клапана открываются непосредственно при помощи распределительного вала ГРМ.

У него есть кулачки – отливы на вале определенной формы и размера. Когда он начинает вращаться, они воздействуют на клапан, надавливая на него, клапан идет вниз, он открывается. Когда кулачек проворачивается и воздействие прекращается, клапан закрывается.

При нагреве металла изменяются линейные размеры деталей. Это относится к валу и клапану. Чтобы не происходило заклинивание при расширении, между ними устанавливается тепловой зазор. Он имеет размеры в десятые доли миллиметра, невооруженным глазом его не видать.

При долгой эксплуатации двигателя происходит износ деталей. Тепловой зазор может меняться. В случае увеличения, слышен металлический стук при работе мотора. Это стучат «пальцы» — клапана газораспределительного механизма.

Кроме неприятного стука, изменение зазора влияет на мощность двигателя, может привести к прогару «клапан» или дорогостоящему ремонту головки блока цилиндров. Поэтому его необходимо раз в 10000 километров регулировать в ручную при помощи специальных щупов.

Чтобы убрать ручное вмешательство в работу ГРМ, были придуманы гидрокомпенсаторы – устройства автоматической регулировки теплового зазора между клапанами и распределительным валом . Они самостоятельно «выбирают» это расстояние, чтобы происходило полное закрытие или открытие клапанов, не нарушалась правильная работа газораспределения.

Из чего они состоят

Их существует несколько видов:

  • Гидротолкатель;
  • Гидроопора;
  • Роликовый гидротолкатель;
  • Гидроопора для установки в рычаг или коромысло.

Конструкция у всех схожа. Есть основные элементы, за счет которых гидрокомпенсатор работает:

  • Корпус с отверстием для подачи масла;
  • Палец с пружиной и клапаном в виде шарика.

Как работают гидрокомпенсаторы

Масло подается через отверстие в корпусе. Палец, под действием возвратной пружины, набирает масло в полость корпуса по принципу медицинского шприца (наглядный пример показан в ролике ниже).

Заполнив маслом емкость гидрокомпенсатора, обратный клапан запирается. Палец жестко упирается в распределительный вал или клапан. Так как жидкость не сжимаема, то вращаясь кулачок распредвала давит на «гидрик», а тот в свою очередь на головку клапана. Он открывается.

При этом часть масла может выйти из-под клапана. Пружина поднимает палец, он вновь добирает недостающей жидкость, чтобы плотно упираться в кулак. Таким образом, автоматически происходит уменьшение теплового зазора.

Это общий принцип работы гидрокомпенсаторов автомобиля. В зависимости от конструкции некоторые детали могут меняться. Например, в гидротолкателях давление масла, создаваемого масляным насосом, передавливает упругость возвратной пружины шарика-клапана. Жидкость набирается в полость плунжера и выталкивает его. Давление уравнивается до и после клапана, он запирается. Кулачок распределительного вала давит гидроопору, она на клапан. В таком случае потери давления через клапан минимальны. Поэтому подобные виды гидрокомпенсаторов считаются лучшими.

Теперь смотрим видео, где доходчиво на примере медицинского шприца показан принцип работы гидрокомпенсаторов в автомобиле.

В этом видосе можно более подробно узнать про гидроопоры, гидротолкатели, из чего они состоят и как работают:

Почему стучат гидрокомпенсаторы?

Если это устройство автоматически регулирует зазор, а точнее его убирает, то металлического стука не должно быть слышно. А он есть! Это происходит по нескольким причинам:

  1. Механический износ кулачков и самого распредвала, он может люфтить в постели. Из-за этого палец гидротолкателя может подниматься на недопустимую высоту. Кроме этого, поверхность пальца тоже может изнашиваться, плотного прилегания уже не будет. По этой причине увеличивается зазор и раздается стук на холостых оборотах.
  2. Не качественное или «грязное» масло. Если долго не менять масло в двигателе, то оно может содержать в себе частички угара, износа трущихся частей мотора. Все это легко забивает отверстия в корпусах гидрокомпенсаторов. По этой причине они полностью не набираются жидкость, соответственно, палец не выходит на необходимую длину. Образуется зазор и стук в работе.

Если игнорировать это, то со временем клапана и седла могут прогореть, а это ремонт головки блока цилиндров. Клапана полностью не закрываются, двигатель теряет компрессию, отработавшие газы «слизывают» тонкую кромку клапана при его не полном закрытии. Они прогорают, появляются «язвы» на кромках и седлах, меняется геометрия поверхности прилегания. Это потеря мощности, неровная работа двигателя, перерасход топлива и дорогостоящий ремонт.

Кроме этого, происходит повышенный износ кулачков распредвала. Если запустить эту проблему, то можно попасть на замену распределительных валов ГРМ двигателя, а это уже существенные деньги.

На видео наглядно показаны последствия стука гидрокомпенсаторов для распредвала:

Источник

Гидрокомпенсаторы: что это такое и почему они стучат

Современные автомобили становятся более совершенными и умными. Это касается и газораспределительного механизма. Очень важно чтобы клапан всегда открывался и закрывался в нужный момент, чтобы в идеале, не было зазоров между распределительным валом и самим клапаном. Это дает много преимуществ, например увеличение мощности и уменьшение расхода топлива. Раньше клапана регулировались вручную, потом появились механические «широкие» толкатели (которые, кстати, используются и по сей день на многих авто), но вершиной эволюции стали гидравлические компенсаторы или попросту «гидрокомпенсаторы». Они имеют много положительных моментов, но и отрицательных хватает, в частности они могут стучать. Сегодня я постараюсь простым и понятным языком рассказать об устройстве, а также о некоторых поломках, будет и видео версия в конце …

СОДЕРЖАНИЕ СТАТЬИ

Для начала определение:

Гидрокомпенсаторы – это устройства использующие давление масла для автоматической регулировки зазоров между клапанами и распределительными валами (или валом). Таким образом, улучшая динамические характеристики, уменьшая расход топлива. Стоит отметить, что улучшается и акустический комфорт, банально двигатель работает тише.

НО до появления гидрокомпенсаторов, на автомобили устанавливались механические регуляторы клапанов …

Немного истории

Гидравлические компенсаторы пришли на смену менее эффективным механическим регуляторам газораспределительных механизмов. Как правило, обычный клапан двигателя, скажем на классическом двигателе ВАЗ 2105 — 2107, не имеет гидрокомпенсатора поэтому его часто приходилось регулировать, в среднем через 10 000 километров. Регулировка клапана на, ВАЗ 2105 – 2107, производилась вручную, то есть приходилось снимать клапанную крышку и выставлять зазоры, при помощи специального щупа, которые различались по толщине, а значит вы могли подобрать для вашего пробега.

Если регулировку не производить, то двигатель автомобиля, начинал шуметь, динамические характеристики снижались, а расход топлива возрастал. Я снял подробное видео, почему нужно регулировать клапана, посмотрите полезно.

Через 40 – 50000 километров, клапана вообще следовало менять. То есть механическая регулировка клапана, «мягко» скажем — изжила себя, нужно было, что-то делать, так сказать усовершенствовать конструкцию.

Так на двигателях переднеприводных ВАЗ, начали устанавливать механические толкатели перед клапаном. Если утрировать, то на клапан сверху просто одевалась большая «шляпка», у нее большой диаметр (чем у старой конструкции), а поэтому износ намного уменьшился, ведь износить больший диаметр гораздо сложнее, чем малый. Но регулировка все равно осталась, конечно не каждые 10 000 километров, намного реже, но ее все равно рекомендуется делать. Обычно это происходило путем подкладывания ремонтных «шайб», увеличенной высоты. Стоит отметить, что «такие» механические регулировки достаточно эффективны и используются некоторыми производителями до сих пор, регулировка шайбами рекомендуется не ранее 40 – 50 000 километров (если говорить о наших ВАЗ) на некоторых иномарках толкатели ходят еще дольше. Большими плюсами является простота конструкции, неприхотливость (можно лить полусинтетические масла), а также относительная дешевизна конструкции. Минусами можно отметить то, что при выработке «шайб» сверху двигатель начинал работать шумнее, падали динамические характеристики и увеличивался расход. Нужна была конструкция, которая автоматически регулировала зазор.

И вот на смену механической регулировке клапана, пришла совершенно новая технология. Тут все просто — теперь вам не нужно регулировать клапана вручную, за вас все сделают гидрокомпенсаторы. Они сами выставят нужный зазор клапана двигателя, благодаря чему увеличивается ресурс двигателя, увеличивается мощность, снижается расход топлива, да и механизм ходит довольно долго 120 – 150 000 километров (при должном обслуживании). В общем, шаг вперед.

Какие бывают типы гидрокомпенсаторов

Эти устройства широко применяются именно в системах ГРМ. Однако их аналоги применяются и в натяжениях цепей, так называемый «натяжитель цепи ГРМ». На данный промежуток времени применяются всего 4 конструкции.

  • Гидротолкатель. Часто применяется на современных авто для регулировки зазора между клапаном и распределительным валом
  • Гидроопора
  • Гидроопора для установки в рычаги и коромысла. В основном применялись на старых механизмах ГРМ
  • Роликовый гидротолкатель

Все 4 типа имеют места быть на различных конструкциях, хотя «гидроопоры» часто применялись раньше в двигателях. Сейчас все больше производителей уходят к «гидротолкателям». С типами немного понятно, теперь подробнее как они работают.

Принцип работы гидрокомпенсатора

Для начала я хочу разобрать составляющие гидротолкателя:

  1. Кулачек распредвала (1)
  2. Проточка в теле гидрокомпенсатора (2)
  3. Втулка плунжера (3)
  4. Плунжер (4)
  5. Пружина клапана плунжера (5)
  6. Пружина ГРМ (6)
  7. Зазор между гидрокомпенсатором и кулачком распределительного вала (7)
  8. Шарик (клапан) (8)
  9. Масляный канал в теле гидрокомпенсатора (9)
  10. Масленный канал в головке блока цилиндров (10)
  11. Пружина плунжера (11)
  12. Клапан ГРМ (12)

Гидрокомпенсатор это как бы промежуточное звено между клапаном и распределительным валом газораспределительного механизма. Когда кулачек вала (1) не давит на гидравлический компенсатор то клапан (12) находится в закрытом состоянии, по воздействием пружины (6).

Пружина плунжера (11) давит на плунжерную пару (3 и 4) за счет этого корпус гидрокомпенсатора перемещается к валу, пока не упрется в него, тем самым деля зазор минимальным.

Давление внутри плунжера производится при помощи давления масла, от двигателя оно движется по каналу (10) и затем в канал самого компенсатора (9). Далее через канавку (2) заходит внутрь, где отгибает клапан (8) и проходит создавая давление.

Затем кулачок распределительного вала идет вниз, создавая давление на гидравлический компенсатор. Масло которое зашло внутрь плужерной пары создает давление на клапан (8) фактически запаковывая его. Как мы с вами знаем, масло практически не сжимается, поэтому после запирания компенсатор выступает как жесткий элемент, который давит на клапан ГРМ, открывая его.

Стоит отметить что это высокоэффективное устройство, масло из плунжерной пары немного выдавливается прежде чем шарикообразный клапан (8) его запрет внутри. Таким образом, может образоваться небольшой зазор, который уберется при следующей накачки масла через каналы (9 и 10) и гидрокомпенсатор станет опять жестким.

Таким образом, не смотря на температуру двигателя, тепловое расширение, всегда будет устанавливаться максимально возможный зазор. Этот механизм не нужно регулировать весь срок службы, даже не смотря на выработку, ведь он всегда эффективно «поджат» к распределительному валу.

Плюсы и минусы гидравлического компенсатора

Положительных сторон у такого механизма много:

  • Он полностью не обслуживаемый, работает автоматически
  • Увеличенный ресурс системы ГРМ
  • Максимальный прижим, что дает хорошую тягу
  • Минимальный расход топлива
  • Двигатель работает всегда тихо

Что же не смотря на всю передовую конструкцию, есть и достаточно большое количество минусов.

  • Так как вся работа строится на давлении масла, нужно заливать только качественные смазки. Желательна синтетика
  • Нужно чаще менять масло
  • Конструкция более сложная
  • Дорогостоящий ремонт
  • Со временем могут забиваться, что ухудшает работу двигателя (расход и тяга), а также ГРМ начинает шуметь

Самые большие минусы, это то что конструкция дорогая и сложная, и ОЧЕНЬ сильно требовательна к качеству масла. Если лить «не пойми что» очень быстро выйдут из строя и потребуют замены. Например, обычные механические толкатели, намного проще и менее требовательны к качеству смазки.

Почему гидрокомпенсаторы стучат

Для начала хочется отметить если компенсаторы стучат, это говорит о не правильной их работе, скорее всего они вышли из строя, либо что-то не так со смазкой двигателя.

Собственно основная причина кроется в качестве и уровне масла, хотя есть куча механических неисправностей.

  • Недостаточно масла. Такое тоже бывает, оно не эффективно закачивается в каналы и поэтому не закачивается внутрь плунжерной пары, то есть не создается нужного давления внутри

  • Забиты каналы в головке блока или самом гидрокомпенсаторе. Происходит это из-за несвоевременной замены масла, оно пригорает и на стенках образуются нагары, которые закупоривают каналы, масло не может эффективно проходить в компенсатор.

  • Вышла из строя плунжерная пара, зачастую ее просто клинит
  • Вышел из строя шариковый клапан плунжера
  • Нагар на корпусе плунжера снаружи. Он физически не дает ему подниматься и компенсировать зазоры

Конечно бывает стучат из-за того что в системе есть нагар, тогда нужно просто их снять и промыть, работоспособность может восстановится. НО при больших пробегах, они разбиваются (проявляется выработка), требуют замены.

Я еще раз хочу повторить — нужно понимать, что работа гидрокомпенсатора зависит от качества масла и его своевременной замены. Нужно лить только качественную синтетику и мой вам совет – меняйте смазку немного чаще положенного срока, например положено через 15 000 км, меняйте через 10 – 12 000 км. Прослужат дольше.

Сейчас небольшое подробное видео, смотрим.

НА этом заканчиваю, искренне ваш АВТОБЛОГГЕР.

(47 голосов, средний: 4,62 из 5)

Похожие новости

Нулевое (промежуточное) ТО (техосмотр), нового автомобиля. Что э.

Би-турбо (Bi-Turbo) и Твин-турбо (Twin-Turbo), двойной наддув – .

Сколько мощности забирает кондиционер, катализатор, генератор, у.

Источник

Гидрокомпенсатор что это такое


Гидрокомпенсаторы клапанов ГРМ: устройство и принцип работы

Детали газораспределительного механизма двигателя в процессе работы испытывают большие нагрузки и высокую температуру. От нагрева они расширяются неравномерно, так как сделаны из разных сплавов. Для обеспечения нормальной работы клапанов в конструкции должен быть предусмотрен специальный тепловой зазор между ними и кулачками распредвала, который закрывается в процессе работы мотора.

Зазор должен всегда оставаться в предусмотренных пределах, поэтому клапана нуждаются в периодической регулировке, то есть в подборе толкателей или шайб нужного размера. Избавиться от необходимости регулировки теплового зазора, и уменьшить шум на непрогретом двигателе позволяют гидрокомпенсаторы, иногда их называют просто «гидрики» или гидротолкатели.

Устройство гидрокомпенсатора

Гидрокомпенсаторы автоматически регулируют меняющийся тепловой зазор. Приставка «гидро» подразумевает действие какой-то жидкости в работе детали. Этой жидкостью выступает масло, которое подается в гидрокомпенсаторы под давлением. Сложная и точная система пружин внутри регулирует зазор.

Различные виды гидрокомпенсаторов

Применение гидрокомпенсаторов предполагает наличие следующих преимуществ:

  • отсутствие необходимости периодической регулировки клапанов;
  • правильная работа ГРМ;
  • уменьшения шума при работе мотора;
  • увеличение ресурса деталей газораспределительного механизма.

Основными компонентами гидрокомпенсатора являются:

Принцип работы

Работу детали можно описать несколькими этапами:

  1. Кулачок распредвала не оказывает давления на компенсатор и повернут к нему тыльной стороной, при этом между ними присутствует небольшой зазор. Плунжерная пружина внутри гидрокомпенсатора толкает плунжер из втулки. В это время под плунжером образовывается полость, которая заполняется маслом под давлением через совмещенный канал и отверстие в корпусе. Объем масла набирается до нужного уровня и шариковый клапан закрывается под действием пружины. Толкатель упирается в кулачок, движение плунжера прекращается, и масляный канал перекрывается. При этом зазор исчезает.
  2. Когда кулачок начинает поворачиваться, он нажимает на гидрокомпенсатор, перемещая его вниз. За счет набранного объема масла плунжерная пара становится жесткой и передает усилие далее на клапан. Клапан под давлением открывается и в камеру сгорания поступает топливовоздушная смесь.
  3. Во время движения вниз немного масла вытекает из полости под плунжером. После того как кулачок пройдет активную фазу воздействия цикл работы повторяется вновь.

причины и что делать. Самый простой способ устранить стук гидрокомпенсаторов.

Самая распространенная неисправность современных двигателей – стук гидрокомпенсаторов. Причин множество, в своём большинстве они связаны с качеством масла. Что делать при данной неисправности и как с ней бороться расскажет данный материал.

 

 

Что такое гидрокомпенсатор и как работает гидрокомпенсатор

Гидрокомпенсатор – простое устройство для автоматической регулировки зазора в приводе клапанов, устраняющее необходимость разбирать двигатель при его техническом обслуживании. Гидрокомпенсатор, в просторечии «гидрик» представляет собой миниатюрный гидроцилиндр, меняющий свою длину при нагнетании вовнутрь моторного масла.

Объем масла компенсирует зазор между штоком клапана и кулачком распределительного вала.  Масло в полость гидрокомпенсатора попадает через клапан с очень небольшим отверстием, а выходит наружу через естественные зазоры клапанной пары. Насколько хорошо работает «гидрик» зависит от поступления масла и от состояния плунжерной пары, отсутствия износа или заклинивания.

 

Как понять, что стучит именно гидрокомпенсатор

Неисправный гидрокомпенсатор издает резкий стук, стрекот, с частотой вдвое меньше частоты оборотов двигателя.

Неисправным считается гидрокомпенсатор, который стучит более пары минут после запуска двигателя или стучит после полного прогрева двигателя. Стук прослушивается сверху двигателя и может быть неслышен из салона автомобиля.

Почему стучит гидрокомпенсатор

Причины стука гидрокомпенсатора «на холодную» (при непрогретом моторе):

  1. Слишком густое масло, на непрогретом двигателе, плохо заходит в полость гидрокомпенсатора. Нужно время, чтобы полость заполнилась маслом
  2. Забита загрязнениями масляная магистраль или клапан гидрокомпенсатора. Загрязнения появляются при низком качестве или при затянутых сроках смены моторного масла, а также могут являться продуктами износа некоторых деталей двигателя.
  3. Износ или заклинивание плунжера гидрокомпенсатора. Бывает от естественного износа или от попадания абразивных загрязнений в моторное масло.

Причины стука гидрокомпенсатора «на горячую» (на прогретом моторе):

  1. Заклинивание плунжерной пары гидрокомпенсатора из-за естественного износа или загрязнения. Задиры на плунжере блокируют его движение и гидрокомпенсатор полностью теряет работоспособность. Зазор не выбирается и гидрокомпенсатор стучит.
  2. Слишком малая вязкость прогретого масла, масло вытекает через зазоры плунжерной пары быстрее, чем подается насосом. Некачественное масло или слишком жидкое для данного двигателя масло сильно разжижается при прогреве и легко вытекает через технологические зазоры.

3. Повышенный уровень масла в двигателе, вспенивание масла из-за перемешивания коленчатым валом или из-за попадания воды в двигатель. Следует проверить уровень масла в двигателе, а также использовать только высококачественные моторные масла.

 

Самый простой способ устранить стук гидрокомпенсаторов

Самый простой и действенный способ, помогающий в большинстве случаев, добавка в масло специальной присадки Liqui Moly Hydro-Stossel-Additiv. Присадка промывает масляные каналы, удаляет загрязнения и восстанавливает подачу масла в гидрокомпенсаторы. Кроме того, присадка немного загущает масло, компенсируя тем самым их естественный износ. Присадка добавляется в прогретое моторное масло, полное действие наступает после примерно 500 км пробега.

 

Как еще можно устранить стук гидрокомпенсаторов

  1. Замена гидрокомпенсаторов Достоинства: гарантированный результат. Недостатки: дорого и долго). Нужно учитывать, что на некоторые иномарки, сначала нужно заказать детали, дождаться, пока они придут, и записаться на ремонт в сервисе. На большинстве двигателей, при замене гидрокомпенсаторов потребуются дополнительные затраты на одноразовые детали, например, прокладки или герметик.
  2. Тщательная промывка масляной системы специальными промывками, например: Liqui Moly Oil-Schlamm-Spulung. Достоинства: сравнительно недорого. Недостатки: результат не гарантируется.

3. Возможно, в запущенных случаях, потребуется замена масляного насоса или очистка масляных магистралей двигателя с его частичной или полной разборкой.

Что будет, если не устранить стук гидрокомпенсаторов

Если не заниматься устранением стука гидрокомпенсаторов, то можно проездить довольно долго без особых проблем, но, со временем, двигатель будет работать громче, с вибрациями, упадет мощность и увеличится расход топлива, а далее произойдет износ всего клапанного механизма, в частность распределительного вала двигателя. Его замена — очень дорогое мероприятие.

 

Итог

Если стук гидрокомпенсаторов неоднократно возникает, то нет смысла дожидаться ухудшения ситуации. Добавка присадки Hydro-Stossel-Additiv решит проблему и предотвратит развитие износа на длительное время.

 

ВИДЕО

                                             

;

 


Почему стучат гидрокомпенсаторы и зачем они нужны двигателю?

«Мал, да удал» — это выражение как нельзя лучше подходит нашему герою статьи. Эти небольшие устройства, гидрокомпенсаторы, находятся в самом сердце автомобильного двигателя, в системе газораспределения. Они помогают компенсировать негативные последствия теплового расширения и исключают регулировку зазоров клапанов. Что случается, и почему стучат гидрокомпенсаторы?

Гидрокомпенсаторы что это?

Для начала подробно разберёмся с проблемами, которые помогают решать гидрокомпенсаторы клапанов в современном моторостроении.

Обратимся к отечественной классике – машинам ВАЗ. Опытные автовладельцы наверняка помнят, как после определённого километража старые модели этой марки начинали работать со звуком дизельного мотора, хотя дизельными они никогда не были.

Такое случалось, если забыли вовремя отрегулировать клапаны или же отрегулировали их неправильно, а выполнять данную процедуру было необходимо.

Причина – большие нагрузки на механизмы ГРМ, постоянные и резкие тепловые расширения (тепловые зазоры). Одним словом, работа в адских условиях, что вызывает износ деталей, точность настройки которых должна составлять доли градусов и миллиметров.

Клокочущий звук работы двигателя это лишь вершина айсберга всех проблем.

Неотрегулированные зазоры между кулачками распредвала и толкателей и, как следствие, не вовремя открывающиеся и закрывающиеся клапаны цилиндров, вызывают повышенный расход топлива, снижение мощности силового агрегата и прочие неприятности.

Конечно же, процедура по регулярной юстировке механизма ГРМ требует специальных навыков и оборудования, поэтому инженеры задумались о том, как бы автоматизировать данный процесс. И придумали, создав гидрокомпенсаторы.

Они, благодаря своей хитрой конструкции, позволяют автоматически поддерживать одинаковые тепловые зазоры и компенсировать естественный износ металлических деталей.

Устанавливаются гидрокомпенсаторы между клапанами и распределительным валом, являя собою эдакое промежуточное звено. Как же устроены эти механизмы?

Гидрокомпенсаторы — секреты конструкции

Углубимся в техническую часть и рассмотрим, каким образом эти устройства автоматически поддерживают одинаковый зазор. Его основными конструктивными элементами являются:

  • корпус;
  • плунжерная пара;
  • пружина плунжера;
  • обратный клапан.

Смысл работы гидрокомпенсаторов клапанов заключается в том, чтобы автоматически компенсировать меняющиеся под действием разных факторов зазоры в газораспределительном механизме двигателя, что достигается изменением их длины при помощи пружин и давления масла.

Как мы уже упоминали выше, гидрокомпенсаторы располагаются между распредвалом (его кулачками) и клапанами.

Когда кулачок вала повёрнут тыльной стороной, в компенсатор из рампы поступает порция масла, которая заполняет его полость, и он как бы раздвигается вверх и вниз пока не компенсирует зазор между своим корпусом и окружающими его элементами системы ГРМ.

Когда кулачок вала поворачивается выпуклой стороной к гидрокомпенсатору и давит на него, наш сегодняшний герой запирается, и масло, благодаря своей несжимаемости, превращает его в жёсткий элемент, который давит на клапан, открывая его.

При перемещении компенсатора часть масла из его плунжерной пары выходит через имеющиеся внутренние зазоры, и при возврате в исходное положение из рампы в гидрокомпенсатор поступает свежая порция, заполняющая его внутренности, и вновь зазоры скомпенсированы.

Почему стучат гидрокомпенсаторы?

Могут ли возникать какие-либо проблемы с гидравлическими компенсаторами? К сожалению, могут.

Нужно сказать, что не всегда это говорит о неисправности самих устройств, собака может быть зарыта и в другом. Итак, возможные неисправности:

  • низкое давление в маслосистеме, из-за чего в компенсаторы не поступает достаточно масла, чтобы компенсировать зазоры;
  • износ самой плунжерной пары;
  • клин шарикового клапана компенсатора;
  • заклинивание плунжерной пары;
  • недостаточно масла, и такое бывает;
  • засорены каналы в головке блока, по причине нагара или длительная езда на старом масле.
Как проверить гидрокомпенсаторы?

Как проверить гидрокомпенсаторы на работоспособность?

Справедливости ради отметим, что последние три проблемы из списка могут возникать по вине некачественного масла, заливаемого в систему, так как наличие в нём грязи и прочей гадости засоряет прецизионный механизм гидрокомпенсатора и преждевременно выводит его из строя.

Стук гидрокомпенсаторов. Как проверить гидрокомпенсаторы? — Слушаем!

  1. Прерывистый шум в верхней части двигателя на холостых оборотах. Неисправность: клапан гидрокомпенсатора закрывается негерметично, поэтому не создается должного давления для компенсации теплового зазора;
  2. При прогретом моторе возникает непрерывный отличительный шум, но при повышении оборотов шум стихает. Шум может исходить от нескольких клапанов. Неисправность: Износ — увеличение зазора между плунжером и и плунжерной втулкой, через который уходит масло, не успевая создавать компенсационное давление в гидрокомпенсаторе;

В целом же нормой считается минимум 100-120 тысяч километров пробега двигателя, прежде чем герои нашей статьи умрут естественной смертью, если же это произошло раньше, то причина, как правило, в некачественном масле.

Самая действенная мера по устранению стука, замена на новые.

А чтобы не сталкиваться с этой проблемой, заливайте качественную синтетику и тогда вы вряд ли услышите, как стучат гидрокомпенсаторы.

Коллеги-автолюбители, надеюсь, мы прояснили ситуацию по поводу того гидрокомпенсаторы что это такое и зачем они нужны в моторах машин.

Спасибо за внимание и до новых встреч на страницах моего уютного блога!

Гидрокомпенсатор — что это | АВТОЧАС

Гидрокомпенсатор представляет собой маленькую деталь в автомобильном двигателе, обычно незаметную. Однако в случае неисправности данной детали происходит ухудшение технических параметров двигателя и возникает громкий стук под капотом. Что такое гидрокомпенсатор, какова его роль в работе мотора, как проводится ремонт этой детали?

Место размещения и функции

Отыскать гидрокомпенсатор в двигателе машины довольно трудно. Это требует знания устройства этого самого двигателя. Верхняя часть силового агрегата является местом расположения головки, которая прикрывает блок цилиндров. В ней происходит вращение распределительного вала, представляющего собой ось, имеющую маленькие выступы — кулачки.

Под этими кулачками находятся гидрокомпенсаторы. Необходимо, чтобы выступ нажимал на клапаны, находящиеся в цилиндрах. Но длина этих клапанов определяется температурой и представляет собой непостоянную величину. Для постоянного срабатывания клапана на необходимом этапе цикла автомобильного двигателя нужно, чтобы постоянно был зазор, разделяющий распределительный вал и ножку клапана.

Ранее изменение размеров клапана компенсировали пятки. Изнашиваясь, зазор становился больше. Кулачок в закрытой позиции недостаточно герметично соприкасался с шайбой, что приводило к хорошо слышному удару. По этой причине такая неприятность обозначалась формулировкой «стучат клапаны». Чтобы устранить эту неисправность, требовалось выполнение регулировки клапанов. Это сложный процесс, для которого нужна квалификация.

Но регулировка клапанов всё равно была не идеальной, поскольку геометрические характеристики ножки клапана имели определённые различия при разных температурах металла. Чтобы устранить вышеописанную проблему, были созданы гидрокомпенсаторы. Гидрокомпенсатор — это герметичный цилиндр, который наполнен маслом. Распределительный вал имеет кулачок, действующий на верхнюю половину цилиндра, передающего усилие на ножку клапана. Абсолютно исправная деталь даёт возможность освободиться от необходимости регулировать зазор клапанов на протяжении всего периода использования силового агрегата.

%rtb-4%

Плюсы и минусы гидрокомпенсатора

Преимущества применения этих деталей следующие:

  • Гидрокомпенсатор не нуждается в техническом обслуживании, время его эксплуатации сравнимо со временем эксплуатации самого двигателя.
  • Гидрокомпенсатор продлевает период эксплуатации механизма газораспределения (включающего клапаны, распределительный вал и ряд других деталей).
  • Гидрокомпенсатор плотно прижимает кулачок к клапану, увеличивая мощность мотора.
  • Применение этой детали приводит к уменьшению расхода бензина.
  • Снижается шум, порождаемый работой мотора.

Но имеются также недостатки. Прежде всего к ним относится сложность конструкции. В случае неисправности гидрокомпенсатора ремонт его будет стоить дороже, чем регулирование зазора клапанов. Также его недостатком является возможность засора. В цилиндр может проникнуть грязь, что ведёт к повышению шума во время работы механизма газораспределения. Ограничением является необходимость использования только высококачественного масла. Применение недорогого смазочного материала приведёт к быстрому выходу из строя и необходимости полной замены гидрокомпенсатора.

Работа гидрокомпенсаторов

Гидрокомпенсатор является устройством, предназначенным для автоматического устранения проблем, связанных с закрытием клапанов механизма газораспределения. Наличие в современных автомобильных двигателях гидрокомпенсаторов позволяет автомобилистам не регулировать клапаны постоянно. Гидрокомпенсатор даёт возможность закрывать клапаны, не создавая необходимости в обслуживании и вообще каком-то вмешательстве человека. Сущность его работы состоит в том, что изменение теплового зазора приводит к дожиманию гидрокомпенсатором клапана до необходимого положения.

Гидрокомпенсатор состоит из плунжерной пары и шарикового клапана, по которому происходит поступление масла в гидрокомпенсатор. Масло является едва ли не основным компонентом работы гидрокомпенсатора. Очень низкий коэффициент сжатия масла приводит к тому, что давление этого масла вместе с усилием плунжерной пружины становятся главными факторами работы гидрокомпенсатора.

Продление срока эксплуатации гидрокомпенсаторов

Время службы гидрокомпенсатора в автомобильном моторе почти не связано с правильностью действий водителя и другими субъективными факторами. Однако имеется одно условие, способное значительно увеличить время эксплуатации гидрокомпенсаторов, а также других деталей двигателя. Применение высококачественного масла, а также своевременность его замены значительно увеличивают шансы для автомобильного мотора проработать без значительного ремонта минимум 100 000 км.

Низкокачественное масло забивает клапан гидрокомпенсатора. Плунжерная пара изнашивается по причине либо дефицита масла, либо низкого качества этого масла. Потому многое определяется моторным маслом — его качеством. Следует менять масло почаще, не экономя на дешёвых марках, т. к. ремонт стоит намного дороже.

Неисправности гидрокомпенсаторов

Что такое гидрокомпенсаторы

Если Вы и не слышали о гидрокомпенсаторах, то о периодической необходимости регулировки клапанов, думаю, слышал практически каждый, даже, не автовладелец. Так, для чего — же нужны, эти, называемые в народе «гидриками», маленькие детальки?

Представьте – Вы покупаете новую Десятку. И какую машину Вы выберите; — 16-ати (оснащенную гидриками), или — же 8-ми клапанную ( без гидрокомпенсаторов)? Если Вы мастеровой автолюбитель, возможно, поддавшись простоте двигателя, Вы выберите именно 8-ми клапанную Десятку. Необходимость регулировки клапанов раз в 5 000 и даже раз в 2 000км, Вас нисколько не смутит — ведь это, всего — лишь приятное времяпровождение. Но приятное оно лишь для человека, знающего это дело, а для обычного водителя, который купил машину только чтобы ездить, а не возится с ней, это означает визит на СТО и соответственно растраты.

  • Что — же такое гидрокомпенсатор

Представить гидрокомпенсатор двигателя довольно просто. Вот представьте два, металлических цилиндрика. Где маленький вставлен в более крупный, а в крупном предусмотрено небольшое отверстие, через которое он наполняется маслом. Моторное масло, подающееся в большой цилиндрик под давлением, выталкивает из большого цилиндрика — маленький. Таким образом, грубо говоря, — гидрик обеспечивает жесткую связь, между распределительным валом и рокерами. Если же гидриков нет, зазор между рокером и распредвалом регулируется вручную, и иногда он сбивается.

На самом деле, гидрокомпенсатор — это как натяжитель цепи в миниатюре. Принцип одинаков — в обоих случаях основан на подачи масла под давлением.

  • Сколько служат гидрокомпенсаторы

Если посмотреть на гидрокомпенсаторы, старых, 20-ати летних БМВ. Вы заметите, что почти все они, а возможно и абсолютно все, — родные. Это потому, что сам принцип работы, этих, маленьких деталек, довольно прост. Но! — это механизм, качество работы которого, напрямую зависит от качества масла в двигателе. Если двигатель Вашего автомобиля оснащен гидрокомпенсаторами, — тогда интервалы замены масла лучше не растягивать. Дело в том, что из — за грязного масла, на рабочей поверхности гидриков, может образовываться налет. А так — как это весьма маленькая деталька, для ухудшения ее рабочих характеристик достаточно и небольшого налета. Вот из — за такого, незначительного налета, гидрик может не высовываться на столько, на сколько это требуется. При этом, водитель старенького, оснащенного гидриками автомобиля, будет слышать цокот, аналогичное тому, что появляется при больших зазорах между рокером и распредвалом. Этот, неприятный звук, ведет к потере мощности и крутящего момента.

Но, если автомобиль с гидрокомпенсаторами достался рукастому автолюбителю. Он наверняка, в течении дня, или может — быть, двух. Обязательно решит данную проблему. Для этого понадобится снять «постель» , вытащить гидрокомпенсаторы, разобрать их, и промыть в щелочной кислоте. После промывки и сборки, Вы заметите — цокот ушел, а машина стала тянуть лучше с любых оборотов.

  • Так нужны — ли гидрокомпенсаторы?

Это сложный вопрос, но очевидно, что эти, маленькие детальки, нужны человеку который покупает новую машину и сам не намерен заниматься ее ремонтом и обслуживанием. А вот среди рукастых мастеров, найдутся и поклонники и противники гидриков. Заметьте; — даже на простейший, классический Восьмиклоп, устанавливаемый на Шниву, были добавлены гидрокомпенсаторы. Если владелец такого авто не будет жестко затягивать с заменой масла, — это реально полезное усовершенствование.

Еще один яркий пример, когда гидрики применялись ради уменьшения работ по обслуживанию силового агрегата, можно заметить в двигателе Mercedes, серии М103. Где рядом с цепью, и всего двумя клапанами на цилиндр, были применены гидрокомпенсаторы. Очевидно, — в Мерседес хотели сделать машину, которая бы по максимуму, не нуждалась в обслуживании.

А вот покупать старую, оснащенную гидриками машину, человеку для которого авто — лишь средство передвижения, я бы не советовал. Потому — как, операция по чистке гидрокомпенсаторов требует большого объема предварительной работы. Сама чистка длится долго, ведь даже на самой обычной, шестнадцатиклапанной Четверке, гидриков будет 16-ать. А на шестицилиндровых машинах их уже — 24 ( там где по 4 клапана на цилиндр).

Поэтому, если Вам присмотрелась старенькая, но вроде как ухоженная, живая машина с гидриками, — хотя — бы послушайте двигатель. Не цокотит ли он?

При правильном обслуживании и эксплуатации двигателя, и обязательно при соблюдении интервалов замены масла, гидрики — это реально полезное усовершенствование. Но на старом, запущенном двигателе, данное усовершенствование способно создать множество проблем, неопытному автолюбителю. Это особенно печально, когда человек не только не разбирается в авто, но еще и не слишком хорошо зарабатывает, ведь операция по воскрешению гидриков не так дешево стоят. К тому — же, на СТО часто предлагают установку новых деталей ( чтобы не возится с чисткой старых гидриков). Теперь прикиньте, — один гидрик стоит 12-ать долларов, но что если на Вашей машине их 24?

Хотите старую, но изначально классную машину? — тогда в технической части разбирайтесь сами.

Гидрокомпенсаторы в двигателе: что это?

Прогрев бензинового или дизельного двигателя и последующий выход мотора на рабочие температуры приводит к параллельному нагреву всех механизмов силовой установки. Сильный нагрев теплонагруженных узлов означает закономерное тепловое расширение деталей, в результате чего происходит изменение зазоров между элементами конструкции.

Что касается ГРМ, точные зазоры предельно важны для нормального функционирования механизма газораспределения, так как от четкости работы впускных и выпускных клапанов напрямую зависит эффективность ДВС. Конструкция клапанного механизма на разных моторах может предполагать как ручную регулировку указанного теплового зазора, так и автоматическую подстройку при помощи гидрокомпенсаторов.

Рекомендуем также прочитать статью об устройстве гидрокомпенсатора. Из этой статьи вы узнаете о конструктивных особенностях и принципах работы указанной детали ГРМ.

Содержание статьи

Необходимость регулировки теплового зазора клапанов

Работа клапанного механизма происходит в крайне тяжелых условиях. К таковым относят постоянные ударные нагрузки и большую теплонагруженность. Также стоит отметить, что нагрев деталей ГРМ отличается значительной неравномерностью, а сам клапанный механизм постоянно страдает от естественного износа.

Нормальное открытие и закрытие клапанов в условиях высоких температур обеспечивается благодаря наличию обязательного термического зазора. Такие зазоры для впускных и выпускных клапанов отличаются, так как выпускные клапаны нагреваются намного сильнее впускных от контакта с раскаленными отработавшими газами. На большинстве легковых авто зачастую показатель величины зазора на впускных клапанах находится на приблизительной отметке 0,15-0,25 мм. Для выпускных клапанов данный показатель составляет в среднем 0,2-0,35 мм и более.

Выставленные зазоры клапанов могут постепенно сбиваться в результате естественного износа механизма, после проведения ремонта ДВС и т.д.

Зазоры, отличные от допустимой нормы в большую или меньшую сторону, вызывают ускоренный износ ГРМ. Появляется стук клапанов, наблюдается падение мощности агрегата и перерасход топлива. Токсичность выхлопа сильно увеличивается, из строя быстро выходят катализаторы и сажевые фильтры.

Увеличенный и уменьшенный зазор: последствия

Недостаточный зазор впускного клапана (клапана зажаты) не позволяет осуществить полное закрытие. Перетянутые впускные клапана в бензиновом двигателе приведут к тому, что топливно-воздушная смесь будет частично гореть во впуске. Запуск двигателя в этом случае осложняется, агрегат не развивает мощность, потребляет много горючего и т.д.

Для выпускных клапанов последствия неправильной регулировки намного серьезнее. Горячие газы из камеры сгорания будут прорываться через неплотности, вызывая прогар тарелки клапана и разрушение седла клапана. Недостаточное прилегание клапанов в дизеле может привести к значительному падению компрессии, что не позволит далее нормально эксплуатировать дизельный мотор.

Большой зазор вызывает сильные ударные нагрузки, в результате чего будет слышен резкий и частый металлический стук в области клапанной крышки, который нарастает с увеличением оборотов. В этом случае ускоряется износ механизма клапанов, распредвала и других элементов ГРМ. Если клапана не открываются полностью, тогда проходное сечение уменьшается. Это означает, что цилиндры хуже наполняются топливной смесью (воздухом в дизельном ДВС) и плохо вентилируются. Мощность двигателя при этом сильно снижается, содержание вредных веществ в отработавших газах растет.

Вполне очевидно, что от правильно отрегулированных клапанов будут зависеть не только важнейшие эксплуатационные показатели силового агрегата, но и его общий моторесурс. Ручная регулировка теплового зазора клапанов является плановой процедурой, реализуется при помощи щупа, регулировочных шайб и рычагов, а также требует определенных навыков. Осуществляется такая подстройка каждые 10-15 тыс. километров. Дополнительной сложностью ручной регулировки является то, что для достижения «мягкой» работы ГРМ клапана необходимо регулировать с учетом различных температурных колебаний, а не по среднему значению. Во многих автосервисах этого не делают.

С учетом указанных сложностей в конструкции ГРМ стали применяться так называемые гидрокомпенсаторы, которые выбирают необходимый зазор автоматически.

Благодаря этому решению необходимость настраивать клапана вручную полностью исключена. Гидрокомпенсаторы теплового зазора клапанов представляют собой деталь ГРМ, которая способна самостоятельно изменять свою длину на такую величину, равную тепловому зазору.

Преимущества и недостатки использования гидрокомпенсаторов

Использование компенсаторов в устройстве клапанного механизма позволило значительно смягчить его работу, минимизировать ударные нагрузки и убрать лишний шум. Уменьшился износ деталей ГРМ, фазы газораспределения стали более точными, что увеличило ресурс двигателя, его мощность и крутящий момент. К недостаткам внедрения гидрокомпенсаторов относят появление особых требований к эксплуатации ДВС, а также определенные нюансы в момент холодного пуска.

Конструктивно рабочей жидкостью для компенсаторов выступает моторное масло. В первые секунды после запуска мотора давление в системе смазки практически отсутствует, а работа компенсаторов в этот момент сопровождается характерным стуком. Гидрокомпенсаторы стучат «на холодную» особенно сильно, с прогревом шум пропадает.

Зависимость общего срока службы компенсаторов от давления в системе смазки и качества моторного масла определяет их повышенную чувствительность к смазочному материалу.

Для нормальной работы ГРМ с гидрокомпенсаторами необходимо с особым вниманием относиться к вопросу подбора и замены моторного масла.  Плунжерная пара компенсаторов имеет минимальные зазоры, которые могут с легкостью засориться при несвоевременной замене масла и масляного фильтра, в результате  использования не подходящей по допускам смазки, масел низкого качества и т.д.

Для ГРМ с гидрокомпенсаторами оптимально использовать маловязкие полусинтетические и синтетические масла SAE 0W30, 5W30, 10W30 и т.д. Использование масел с повышенной вязкостью SAE 15W40 и других в моторах с компенсаторами не рекомендовано.

Читайте также

Engineering Essentials: основы гидравлических насосов

  • Войти
  • Регистр
  • Поиск
  • Fluid Power Basics
  • Гидравлические клапаны
  • Гидравлические насосы и двигатели
  • Цилиндры и приводы
  • H&P Connect
    • Ресурсы
    • Digital Arch5
    • Каталог дистрибьюторов
    • Блоги
    • Каталог оборудования
    • Основы дизайна
    • Часто задаваемые вопросы по дизайну
    • Вебинары
    • Официальные документы
    • Настенные диаграммы
    • Электронная рассылка Подписка
    • 000
    • 000 Подписка на
    • 000
    • Рекламировать
  • Внести вклад
  • Политика конфиденциальности и использования файлов cookie
.

Клапан, используемый для регулирования падения давления в гидравлической системе. компонент

Блок компенсатора давления моделирует поток через клапан, который сжимается, чтобы поддерживать заданный перепад давления между двумя выбранными гидравлические узлы. Клапан имеет четыре гидравлических порта, два из которых являются проточными (впускной, A , а выходное, B ) и два напорных датчики ( X и Y ). Нормально открытый клапан сокращается при падении давления с X до Y поднимается выше уставки давления клапана.Уменьшение площади проема является функцией падение давления — пропорционально ему в линейной параметризации (по умолчанию) или общая функция этого в табличной параметризации. Клапан служит своей цели пока он не достигнет предела своего диапазона регулирования давления — точки, в которой клапан полностью закрыты, и падение давления снова может неуклонно расти.

Открытие клапана

Расчет площади открытия зависит от параметризации клапана, выбранной для блок: либо Линейное отношение открытия площади , либо Табличные данные - Площадь vs.давление .

Linear Parameterization

Если параметр блока Valve parameterization находится в настройка по умолчанию Линейное соотношение открытия зоны , площадь проема рассчитывается как:

S (Δpxy) = SMax − k (Δpxy − ΔpSet),

где:

  • S Макс — значение указана в Максимальная площадь прохода блок параметр.

  • Δp Установить значение указанное в блоке Настройка давления клапана параметр.

  • Δp XY — давление падение с порта X на порт Y :

    , где p — избыточное давление. в порту, обозначенном нижним индексом ( X или Я ).

  • k — линейная константа пропорциональности:

    , где в свою очередь:

При заданном давлении клапана и ниже его площадь открытия соответствует полностью открытый клапан:

При максимальном давлении и выше площадь отверстия определяется внутренним только утечка:

где максимальное падение давления Δp Макс — сумма:

Зона проема в линейном проеме взаимосвязь параметризация

Табулированная параметризация

Если параметр блока Параметризация клапана установлен на Табличные данные - Площадь vs.давление , открытие площадь рассчитывается как:

, где S XY — табличная функция построенный из вектора падения давления и Вектор области открытия параметров блока. Функция на основе линейной интерполяции (для точек в диапазоне данных) и экстраполяция ближайшего соседа (для точек вне диапазона данных). Утечка и максимальные площади открывания — это минимальные и максимальные значения Вектор площади открытия клапана параметр блока.

Область открытия в Табличные данные - Зависимость площади от давление параметрирование

Динамика открытия

По умолчанию динамика открытия клапана игнорируется. Предполагается, что клапан мгновенно реагировать на изменение перепада давления без задержки во времени между началом нарушения давления и увеличением открытия клапана, возмущение производит.Если такие запаздывания имеют значение для модели, вы может захватить их, установив блок Открытие динамики параметр до Включить динамику открытия клапана . В затем клапаны открываются каждый со скоростью, определяемой выражением:

S˙ = S (ΔpSS) −S (ΔpIn) τ,

, где τ — мера необходимого времени для области мгновенного открытия (индекс в ) для достижения новое установившееся значение (индекс SS ).

Область утечки

Основная цель области утечки закрытого клапана — обеспечить ни разу не изолируется часть гидравлической сети от остальная часть модели. Такие изолированные части снижают числовую устойчивость. модели и может замедлить моделирование или привести к его сбою. Утечка обычно присутствует в мизерных количествах в реальных клапанах, но в модели это точное значение менее важно, чем небольшое число больше нуля.В Площадь утечки получается из одноименного параметра блока.

Расход клапана

Причины потерь давления в каналах клапана: игнорируется в блоке. Какой бы ни была их природа — внезапные изменения площади, отток потока искажения — при моделировании учитывается только их совокупный эффект. Этот Эффект фиксируется в блоке коэффициентом расхода, мерой расхода скорость через клапан относительно теоретического значения, которое он имел бы в идеальный клапан.Расход через клапан определяется как:

q = CDS2ρΔpAB [(ΔpAB) 2 + pCrit2] 1/4,

где:

  • q — объемный расход через клапан.

  • C D — стоимость Коэффициент расхода параметр блока.

  • S — зона открытия клапана.

  • Δp AB — перепад давления из порта A в порт B .

  • p Критерий — давление перепад, при котором поток переходит между ламинарным и турбулентным режимы течения.

Расчет критического давления зависит от настройки Спецификация ламинарного перехода параметр блока. Если это Параметр имеет значение по умолчанию По степени сжатия :

pCrit = (pAtm + pAvg) (1 − βCrit),

где:

  • p Атм — атмосферный давление (как определено для соответствующей гидравлической сети).

  • p Среднее значение — среднее значение манометрическое давление на портах A, и Б .

  • β Критерий — значение Ламинарная степень перепада давления потока блок параметр.

Если параметр блока Спецификация ламинарного перехода равен вместо этого установлен на Число Рейнольдса :

pCrit = ρ2 (ReCritνCDDH) 2,

где:

  • Re Критерий — значение Блок критического числа Рейнольдса параметр.

  • ν — кинематическая вязкость, указанная для гидравлическая сеть.

  • D H — мгновенный гидравлический диаметр:

.

Важность компенсации давления

Когда я был падаваном, изучающим гидравлику, мне было трудно понять концепцию компенсации давления. Частично мои трудности были также результатом того, что я не понимал падения давления, которое тесно связано с компенсацией давления.

Для общей компенсации давления, он описывает компонент, который регулирует отверстие для поддержания потока независимо от перепада давления. Наиболее распространенным компонентом с этой возможностью является регулирование расхода с компенсацией давления.

При регулировании расхода с компенсацией давления в клапан встроен гидростат, который является компонентом, измеряющим падение давления на измерительной части регулятора расхода. Это может быть игольчатый клапан или другое регулируемое отверстие. Гидростат измеряет давление до и после отверстия и работает для поддержания заданного дифференциала.

Понимая падение давления, вы знаете, как соотносятся давления на входе и выходе. Например, если у вас есть 10 галлонов в минуту, поступающих в одно из двух идентичных фиксированных отверстий, подключенных параллельно, то одно с более низким давлением на выходе будет тем, которое протекает больше.Падение давления — это энергия, используемая (или теряемая) для проталкивания жидкости через сужение, и чем выше перепад давления, тем выше расход. Если давление на входе составляет 3000 фунтов на квадратный дюйм, а давление на выходе составляет 500 фунтов на квадратный дюйм, в этом примере будет течь больше, чем при давлении на выходе 2900 фунтов на квадратный дюйм во втором отверстии.

В моих двух примерах одно отверстие имеет перепад давления 2500 фунтов на квадратный дюйм для создания потока, а другое отверстие имеет перепад давления всего 100 фунтов на квадратный дюйм для создания потока, который едва ли допускает просачивание.Добавление гидростата (компенсатора давления) к обоим из этих отверстий обеспечит постоянный поток в зависимости от настройки или размера отверстия, а не давления на входе регулятора потока.

Компенсатор на иллюстрации показывает, как измеряется давление перед отверстием (в данном случае внутри гидростата), а затем после отверстия. Разница между двумя измеренными точками — это падение давления, и компенсатор будет пытаться поддерживать определенное падение давления в зависимости от силы пружины, удерживающей компенсатор в открытом состоянии.

По мере увеличения перепада давления гидравлическое давление на левой стороне гидростата начинает толкать гидростат в закрытие, уменьшая поток, доступный для регулируемого отверстия, что снижает как падение давления, так и поток на отверстии.

Если давление за диафрагмой увеличивается (скажем, из-за нагрузки), то падение давления уменьшается, как и расход. Но затем гидравлическое давление, подаваемое в гидростат после отверстия, толкает гидростат еще больше, что увеличивает поток к отверстию.Это еще раз увеличивает перепад давления, что увеличивает расход.

Гидростат будет уравновешивать постоянно повышающийся и понижающийся перепад давления, помогая отверстию поддерживать точное падение давления независимо от давления, вызванного нагрузкой. Расход будет зависеть от перепада давления, создаваемого давлением пружины гидростата, и не будет изменяться из-за несоответствия давления на входе и выходе.

Это простой пример компенсации давления, но он показывает, насколько важно понимать падение давления.Понимание перепада давления, вероятно, является наиболее важным фундаментальным знанием, необходимым для овладения гидравликой, поэтому, если вы новичок в гидравлике, вам следует проводить здесь большую часть своего времени.

.

Что такое гидравлический привод?

Пневматические приводы обычно используются для управления процессами, требующими быстрой и точной реакции, так как они не требуют большого количества движущей силы.

Однако, когда для приведения в действие клапана требуется большое усилие (например, клапаны главной паровой системы), обычно используются гидравлические приводы.

Хотя гидравлические приводы бывают разных конструкций, наиболее распространены поршневые типы.

Также читайте: Что такое пневматический привод?

Типовой гидравлический привод поршневого типа показан на рисунке ниже.Он состоит из цилиндра, поршня, пружины, гидравлической линии подачи и возврата и штока.

Поршень скользит вертикально внутри цилиндра и разделяет цилиндр на две камеры. В верхней камере находится пружина, а в нижней — гидравлическое масло.

Гидравлический привод

Гидравлическая линия подачи и возврата соединена с нижней камерой и позволяет гидравлической жидкости течь в нижнюю камеру привода и из нее.Шток передает движение поршня на клапан.

Изначально при отсутствии давления гидравлической жидкости сила пружины удерживает клапан в закрытом положении. Когда жидкость попадает в нижнюю камеру, давление в камере увеличивается.

Это давление приводит к тому, что на нижнюю часть поршня действует сила, противоположная силе, создаваемой пружиной. Когда гидравлическое усилие превышает усилие пружины, поршень начинает двигаться вверх, пружина сжимается, и клапан начинает открываться.

По мере увеличения гидравлического давления клапан продолжает открываться. И наоборот, когда гидравлическое масло сливается из цилиндра, гидравлическое усилие становится меньше, чем усилие пружины, поршень перемещается вниз, и клапан закрывается. Регулируя количество масла, подаваемого или сливаемого из привода, клапан может быть расположен между полностью открытым и полностью закрытым.

Принцип работы гидравлического привода аналогичен принципу действия пневматического привода. Каждый из них использует некоторую движущую силу, чтобы преодолеть силу пружины для перемещения клапана.Кроме того, гидравлические приводы могут быть спроектированы с возможностью открытия или закрытия при отказе, чтобы обеспечить отказоустойчивость.

Преимущества гидравлических приводов

  1. Гидравлические приводы прочны и подходят для работы с высокими усилиями. Они могут создавать силы в 25 раз больше, чем пневматические цилиндры того же размера. Они также работают при давлении до 4000 фунтов на квадратный дюйм.
  2. Гидравлический привод может поддерживать постоянную силу и крутящий момент без подачи насосом большего количества жидкости или давления из-за несжимаемости жидкостей.
  3. Гидравлические приводы могут располагать насосы и двигатели на значительном расстоянии с минимальными потерями мощности.

Недостатки гидравлических приводов

Гидравлическая система имеет утечку жидкости. Как и в случае с пневматическими приводами, потеря жидкости приводит к снижению эффективности и чистоте, что может привести к повреждению окружающих компонентов и участков.

Для гидравлических приводов требуется множество дополнительных деталей, включая резервуар для жидкости, двигатель, насос, выпускные клапаны и теплообменники, а также оборудование для снижения шума.

статей, которые могут вам понравиться:
Гидравлическая система
Скорость приводов
Двухходовой запорный клапан
Как выбрать привод
Принцип работы клапана JT
.

Muncie Power Products | 404

ГААННА, штат Огайо, ВРЕМЕННО ЗАКРЫТО

  • Отбор мощности

    ИЗБРАННОЕ

    Коробка отбора мощности F20

    Коробка отбора мощности

  • Жидкая сила

    ИЗБРАННОЕ

    Шланги и фитинги

    Мощность жидкости

  • шланг и фитинги
.

Гидравлические силовые агрегаты | Гидравлика и пневматика

  • Войти
  • Регистр
  • Поиск
  • Fluid Power Basics
  • Гидравлические клапаны
  • Гидравлические насосы и двигатели
  • Цилиндры и приводы
  • H&P Connect
    • Ресурсы
    • Digital Arch5
    • Справочник дистрибьюторов
    • Блоги
    • Каталог продукции оборудования
    • Основы дизайна
    • Часто задаваемые вопросы по дизайну
    • Вебинары
    • Официальные документы
    • Настенные диаграммы
    • Электронная рассылка Подписка
    • 000
    • 000
    • 000 Подписка на
    • 000 Рекламировать
    • Внести вклад
    • Политика конфиденциальности и файлов cookie
    • Условия использования
    Значок Facebook Значок Twitter Значок LinkedIn .

Гидрокомпенсаторы, их устройство, предназначение, почему стучат

На этот раз речь пойдет о детали, которую многие могли слышать при работе мотора, но не все могли её видеть, а именно про гидрокомпенсаторы. Рассказать постараюсь популярно о научном, чтобы упоминание гидрокомпенсаторов в автосервисе не вводило вас в ступор, а недобросовестные механики не обманули вас, предложив ненужный ремонт.

Что такое гидрокомпенсаторы

Придется немного опуститься в дебри устройства двигателя. В верхней части двигателя расположена головка блока цилиндров, внутри которой вращается распределительный вал(возможно даже не один). С виду распределительный вал похож на обычную ось, у которой имеются кулачки. Да что рассказывать. У меня даже фотография с капиталки осталась.

Красным кружочком как раз выделен кулачек распредвала и гидрокомпенсатор под ним. Кулачек должен нажимать на клапан, чтобы его открыть, но длина клапана не постоянна — холодный клапан короче, горячий клапан длиннее. Смотрите как выглядит клапан, чтобы было понятно о чем идет речь.

Так вот. Для того, чтобы клапан всегда закрывался в одно и то же время такта, необходима какая то прослойка между кулачком распредвала и ножкой клапана. Раньше прибегали к помощи регулировочных пятаков, то есть на ножку клапана ложили специальный откалиброванный блинчик, который позволял при прогретом моторе точно закрыть клапан в нужное время. Однако если клапан износился, или пятак подобран неверно, при закрытии клапана кулачек будет неплотно прилегать к регулировочной шайбе и в итоге клапан будет бить о свое посадочное место. Это явление называется «Стучат клапана». На самом деле это может быть звук удара клапана по головке или удара кулачка распредвала по шайбе. По мере износа требовалась операция регулирования клапанов, то есть замена шайб на более толстые. Операция эта достаточно муторная, а самое главное что повторять ее приходилось часто. В дополнение можно сказать, что регулировка клапанов шайбами достаточно не совершенна, ведь на холодную клапан короче, на горячую длиннее и невозможно отрегулировать клапан на оба режима работы двигателя. Вот тут то и придумали гидрокомпенсаторы. Понять принцип их работы достаточно просто: представьте себе обычный ручной насос. Если этому насосу заткнуть выходное отверстие, то поднять ручку насоса вы сможете, а вот опустить уже нет, даже если повисните на насосе. На этом принципе и построен гидрокомпенсатор. В расслабленном состоянии в него подается моторное мало, которое заполняет его полость, но выпускает гидрокомпенсатор масло долго — потребуется несколько часов, чтобы он немного спустился. Как ручной насос в общем.

Таким образом, гидрокомпенсатор это такая штука, которая очень легко наполняется маслом но очень сложно опорожняется. Применение гидрокомпенсаторов позволяет забыть про регулировку клапанов на всем сроке жизни мотора.

Стучат гидрокомпенсаторы

Такое явление случается и у него есть пять причин:

  • Низкое давление масла, в результате чего гидрокомпенсатор не может наполниться маслом на все 100 процентов.
  • Малый уровень масла в двигателе, в результате чего головка двигателя испытывает масляное голодание, а в компенсаторы попадает меньше масла чем надо.
  • Высокий износ гидрокомпенсатора, который привел к его негерметичности.
  • Закоксованность компенсаторов, которая в свою очередь приводит к негерметичности детали, и он легко прожимается.
  • Закоксованность гидрокомпенсаторов, которая приводит к заклиниванию компенсатора в определенном положении.

Гидрокомпенсаторы могут стучать только потому, что их легко продавить или они потеряли свойство прожиматься. Причины легкого прожимания и заклинивания я перечислил выше.

Как избавиться от стука гидрокомпенсаторов

Если причиной стука является низкое давление или масляное голодание головки, необходимо срочно подлить масло до нормального уровня и если стук не исчез через 5-10 минут, проверить давление масла.

При изношенности гидрокомпенсаторов поможет только их замена. Обычно компенсаторов в моторе столько же, сколько и клапанов (по другому деталь называется гидравлический толкатель клапана).

Если компенсатор закоксовался, вполне вероятно, что поможет их чистка.

Чистка или раскоксовка гидрокомпенсатора

Некоторые гидрокомпенсаторы имеют разборную конструкцию, и, разобрав его, реально очистить отложения, которые мешают ему нормально работать. Эта операция выполняется исключительно на свой страх и риск и никто не может дать гарантии, что почищенный компенсатор будет работоспособен. В автосервисе тем более никто не возьмется за эту работу.

Сам я такую работу на своей машине делал, что помогло мне отложить замену гидрокомпенсаторов на пол года.

Для чистки гидрокомпенсатора нам понадобится грубая хлопковая ткань, пассатижи, маленький газовый ключ и крепкий растворитель. Ну и разумеется весь инструмент для снятия головки двигателя и распредвала. При снятии головки, скорее всего, придется снимать ремень ГРМ, который потом необходимо будет выставить по меткам обратно. Также будьте осторожны при затягивании постелей распредвала — тянуть лучше всего динамометрическим ключом и строго под правильным усилием. Клапанная крышка так же должна тянуться динамометрическим ключом или с идеально одинаковым усилиям. Если клапанную крышку затянуть неравномерно, из под её прокладки будет подтекать или потеть масло.

Когда гидрокомпенсаторы будут у вас в руках, их необходимо разобрать. Обычно они собраны на разъемных стопорных кольцах и необходимо с силой выдернуть внутренний цилиндр из корпуса. Так же разбирать компенсатор лучше над газетой или тряпкой, так как внутри гидрокомпенсатора мелкий шарик, пружинка и прочие мелкие детали.

Детали каждого гидрокомпенсатора должны находиться в отдельной емкости. Не перемешивайте детали разным компенсаторов. И запомните какой гидрокомпенсатор где стоял — у них разная выработка.

Повредить внешнюю часть гидрокомпенсатора или внешнюю часть внутреннего цилиндра нельзя, так как это тут же приведет к нарушению герметичности и выходу компенсатора из строя. Разобранный гидрокомпенсатор опускается в растворитель и отмокает, после чего очищается грубой тряпкой до состояния чистого металла. Собирать деталь лучше всего на сухую, а если не получится, слегка смажьте его. Если вы попробуете собрать компенсатор, наполненный маслом, у вас скорее всего ничего не получится. После сборки, гидрокомпенсатор необходимо наполнить маслом при помощи шприца, заводя масло через специальное отверстие сбоку детали.

Когда все компенсаторы почищены и собраны, установите их на место, соберите распредвал и головку.

После установки нельзя заводить двигатель сразу, так как гидрокомпенсаторам необходимо сжаться. Если полностью накачанный компенсатор установить и сразу завести двигатель, клапан может встретиться с поршнем, что приведет к повреждению клапана. Повреждение внешней части гидрокомпенсатора с образованием задиров и его установке на автомобиль приведет к повреждению головки двигателя, после чего её нельзя будет отремонтировать — только замена.

Еще раз повторю, что чистка компенсаторов проводится исключительно на свой страх и риск. Никто не сможет дать гарантию того, что компенсатор будет работоспособен, и что это не повредит двигателю. Так же повторюсь, что чистка компенсатора способна продлить его жизнь ненадолго. Срок службы гидрокомпенсаторов достаточно долгий, при условии что вы используете хорошее масло, так что если вы единожды поменяете их, второй раз замену они скорей всего не потребуют.

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

Почему стучат гидрокомпенсаторы на холодном или горячем двигателе

Стучат гидрокомпенсаторы на холодную и горячую? 4.50/5 (90.00%) 2 голос(ов)

Заведя свой автомобиль из под капота вдруг стал доноситься непонятный стук. Не паникуйте. Вероятнее всего у автомобиля застучали гидрокомпенсаторы. Данная проблема распространена как у отечественных авто, так и у иномарок. Разберем, почему стучат гидрокомпенсаторы на холодную, так и на горячую, и что же в таком случае делать?

Стучат гидрокомпенсаторы на холодную и на горячую. Данная неисправность встречается не только у поддержанных авто с большим пробегом, но и автомобилей вышедших с конвейера.

При появлении надоедливого звука не спешите в автомагазин за покупкой новых деталей.  В статье рассмотрим способы, которые могут помочь избавиться от данного надоедливого стука. Для начала разберемся, что такое гидрокомпенсаторы, где они находятся и почему издают стук.

Автосервисы в Москве по диагностике и ремонту двигателя:

Загружаем автосервисы…

Гидрокомпенсаторы, что это такое?

Гидрокомпенсаторы, если говорить понятным языком, устройство, основное назначение которого в регулировании зазоров клапанов двигателя. Находится между кулачком распредвала и клапаном. Стук гидрокомпенсатора свидетельствует о его неисправности. Происходит это по причине того, что компенасатор не успевает выбирать зазор, таким образом, не справляется со своей работой.

Почему стучат гидрокомпенсаторы: причины

Неисправности могут быть в самом механизме гидрокомпенсатора либо системе подачи масла.

К первой относится:

  1. Ударная поверхность пружинной пары изношена.
  2. Наличие брака.
  3. Клапан подачи масла может засориться, что в результате приводит к его залипанию.
  4. Наличие воздуха в устройстве гидрокомпенсатора. Появляется такое проблема иногда из-за недостачи масла.
  5. Нагар на деталях гидрокомпенсатора.

К причинам второго плана относится:

  1. Воздух в системе, либо уровень масла ниже, выше необходимого.
  2. Система подачи масла засорена нагаром.
  3. Масляный фильтр вышел из строя.
  4. Вязкость масла не соответствует климатическим условиям.
  5. Из-за перегрева двигателя.

Стучат гидрокомпенсаторы на горячую, в основном из-за плохого качества или выработанного моторного масла. Решается это просто. Залейте новое. Возможна также проблема в изношенном масляном фильтре. Проверьте его, и если это так, то лучше всего его заменить. Если проблема не устранена, значит неисправность в узлах двигателя.

Стучат гидрокомпенсаторы на холодную тоже. Но особенность кроется в вязкости масла. Т.к. при нагреве меняет свою вязкость, в более жидкое состояние. В этом и кроется стук гидрокомпенсатора. Поэтому не стоит обращать, на более грубую работу двигателя, который только завелся.

Автосервисы в Москве по замене гидрокомпенсаторов:

Загружаем автосервисы…

К чему приводит стук гидрокомпенсаторов

  • Износ привода ГРМ.
  • Износ головки блока цилиндров.

В заключение…

Если проблема в моторном масле, то устранить самостоятельно это не сложно. Если же в самих гидрокомпенсаторах, то лучше всего обратиться к специалистам на СТО, которые проведут качественную диагностику и выполнят ремонт. Если же будет необходима промывка гидрокомпенсторов, то опять же, справиться можно самостоятельно.

Обслуживайте свой автомобиль, вовремя меняйте моторное масло и фильтра, и стучать гидрокомпенсаторы у вас не будут.

Что такое гидрокомпенсаторы — Отключить иммобилайзер


Что такое гидрокомпенсаторы
Гидрокомпенсатор, он же гидротолкатель предназначен для автоматической регулировки тепловых зазоров клапанов двигателя. В ходе эксплуатации автомобиля можно слышать постукивание двигателя, говорят это стучат гидрокомпенсаторы. А Вы знаете причины этой неисправности и как с ней бороться?

Для работы гидрокомпенсаторов (№15 на рис.) необходима постоянная подача масла под давлением. Для этого в головке цилиндров имеется канал с обратным шариковым клапаном (он предотвращает слив масла из каналов после остановки двигателя), а также каналы на нижней плоскости корпуса подшипников (они же подводят масло и к шейкам распределительных валов).

Гидрокомпенсаторы весьма чувствительны к качеству масла и его чистоте. При наличии в масле механических примесей возможен быстрый выход из строя плунжерной пары гидрокомпенсатора, что сопровождается повышенным шумом в газораспределительном механизме и интенсивным износом кулачков распределительного вала. Неисправный гидрокомпенсатор ремонту не подлежит, его следует заменить. Если после замены стучат новые гидрокомпенсаторы — это нормально, но только непродолжительное время. Если стук не прекращается — следует определить причину.

Как определить, какой стучит гидрокомпенсатор?

Чтобы проверить гидрокомпенсатор необходимо нажать на него выколоткой из мягкого металла или отверткой (при этом кулачок распредвала должен быть обращен к толкателю «затылком»). вк.ком/autobap В нормальном состоянии гидротолкатель должен прожиматься со значительным усилием. Если же усилие невелико, гидротолкатель необходимо заменить.
Установите поочередно кулачки распредвала выступами вверх и проверьте наличие зазора между толкателями и кулачками. Утапливая (например, деревянным клином) проверяемый гидротолкатель, сравните скорость его перемещения с остальными. При наличии зазора или повышенной скорости перемещения разберите гидрокомпенсатор и очистите его детали от загрязнений или замените гидрокомпенсатор.

Почему стучат гидрокомпенсаторы ???

●Если стучат гидрокомпенсаторы при запуске :

Причина неисправности — вытекание масла из части гидрокомпенсаторов во время длительной стоянки.
Способ устранения — шум, исчезающий спустя несколько секунд после пуска двигателя, не является признаком неисправности, так как из части гидрокомпенсаторов, находившихся под нагрузкой клапанных пружин открытых клапанов (каналы подачи масла остались открытыми), вытекло масло, недостаток которого восполняется в начале работы двигателя.

●Стучат гидрокомпенсаторы на холодную и горячую, шум исчезает при повышении оборотов :

Причина неисправности — повреждение или износ шарика обратного клапана.
Загрязнение механизма гидрокомпенсатора продуктами износа при несвоевременной замене масла или его низком качестве.

Способ устранения — замените гидрокомпенсатор.
Очистите детали механизма от загрязнений. Применяйте масло, рекомендуемое в руководстве по эксплуатации.

●Стучат гидрокомпенсаторы на горячую, стук пропадает после повышения оборотов. На остывшем двигателе проблем нет :

Причина неисправности — перетекание масла через увеличенные вследствие износа зазоры между плунжером и гильзой гидрокомпенсатора.
Способ устранения — замените изношенный гидрокомпенсатор в сборе.

●Гидрокомпенсаторы стучат на высоких оборотах, а на малых стука нет :

Причина неисправности — вспенивание при избытке масла (выше верхней метки на щупе) в масляном картере из-за его взбалтывания коленвалом. Попадание воздушно-пенной масляной смеси в гидрокомпенсаторы нарушает их работу.
Засасывание воздуха масляным насосом при чрезмерно низком уровне масла в масляном картере.
Повреждение маслоприемника из-за деформации масляного картера при ударе о дорожное препятствие.

Способ устранения — доведите уровень масла в масляном картере до нормы .
Доведите уровень масла в масляном картере до нормы .
Отремонтируйте или замените дефектные детали.

●Постоянный шум одного или нескольких клапанов, не зависящий от частоты вращения коленчатого вала :

Причина неисправности — возникновение зазора между толкателем и кулачком распредвала из-за повреждения или загрязнения деталей гидрокомпенсатора.

Снимите крышку ГБЦ, установите поочередно кулачки распредвала выступами вверх и проверьте наличие зазора между толкателями и кулачками. Утапливая (например, деревянным клином) проверяемый гидротолкатель, сравните скорость его перемещения с остальными. При наличии зазора или повышенной скорости перемещения разберите гидрокомпенсатор и очистите его детали от загрязнений или замените гидрокомпенсатор.

●Заключение !!!

Чаще всего гидрокомпенсаторы стучат из-за недостаточного уровня масла или его низкого качества. Не спешите разбирать двигатель и искать причину, попробуйте просто заменить маслона на рекомендуемое производителем. Еще один вопрос, который волнует многих, это «можно ли ездить если стучат гидрокомпенсаторы?». Ответ: ездить можно, но как долго двигатель сможет терпеть такие издевательства?

Поделиться новостью с друзьями:

Похожее

Понимание подъемников с гидравлическими клапанами — Moore Good Ink

Автор: Ray T. Bohacz:

Самым раздражающим аспектом регулировки клапанного зазора является его неуклюжесть; слишком много компонентов требуют удаления для выполнения десятиминутной задачи.

Гидравлические подъемники клапана, с другой стороны, по большей части не требуют регулировки. Когда необходима регулировка, вместо установки зазора, как в случае подъемников с твердым или механическим клапаном, гидравлическая система требует предварительной нагрузки. Нет плети.Обычно это требуется только при переустановке ГБЦ.

Необходимость люфта или люфта

Распределительный вал отвечает за синхронизацию клапана, его подъем и продолжительность — периоды, когда он остается открытым и закрытым. В двигателе с кулачковым механизмом это достигается за счет работы распределительного вала с промежуточными компонентами: толкателем клапана (или толкателем), толкателем и коромыслом. В конструкции верхнего кулачка промежуточные компоненты различаются, в них используется толкатель определенного типа вместо толкателя и, возможно, толкателя.Это обсуждение сосредоточено на гидравлическом толкателе, используемом в двигателях с кулачковым механизмом.

Это профиль выступа распределительного вала, который определяет действие клапана, и это движение сначала передается на толкатель клапана, на толкатель и, наконец, на коромысло, которое контактирует со штоком клапана.

Когда детали холодные, они сжимаются, а при выделении тепла расширяются. По этой причине требуется свободный ход для предотвращения заедания деталей при нагревании. Между коромыслом и концом штока клапана создается свободный ход.

Клапанные механизмы, требующие зазора, часто определялись как использующие сплошной подъемник или механический распределительный вал. Сегодняшние двигатели имеют гидравлический или механический подъемник, в зависимости от решения производителя.

Усовершенствования в металлургии и конструкции клапанного механизма теперь позволяют механическому толкателю оставаться в регулировке намного дольше и работать эффективно с меньшим рабочим зазором или зазором. Часто это называют дизайном с плотными ресницами.

При холодном двигателе рабочие зазоры уменьшаются, а в горячем — расширяются, в зависимости от материалов двигателя.Если блок двигателя и головки полностью из чугуна, расширение будет минимальным. В качестве альтернативы, если они из алюминия, ожидайте расширения, потому что алюминий расширяется вдвое больше, чем сталь, а подъемник и толкатель сделаны из стали. Алюминиевый блок и насадки увеличивают ресницы на 0,010–0,020 дюйма от холода к горячему.

Кроме того, установка зазора означает, что эффективный подъем клапана меньше высоты выступа кулачка. Это результат мультипликативного эффекта передаточного отношения коромысла, которое представляет собой смещение точки опоры относительно крепления коромысла.

Например, если кулачок составляет 0,350 дюйма, а соотношение коромысла 1,6: 1, подъем клапана будет 0,350 X 1,6 = 0,560 дюйма, если в двигателе используется гидравлический подъемник, который не имеет люфта. Однако, если бы это была механическая конструкция с зазором 0,020 дюйма, то подъем клапана составил бы 0,540 дюйма.

Это уменьшение может показаться несущественным, но оно представляет собой уменьшение хода клапана примерно на шесть процентов и соответствующее влияние на поток воздуха как в цилиндр, так и из него. Кроме того, поскольку детали изнашиваются из-за постоянного столкновения с уменьшением зазоров, производительность двигателя ухудшается, и уровень выбросов изменяется.

Кроме того, ошибочно полагать, что распредвал со сплошным подъемным механизмом обеспечивает большую мощность, чем конструкция с гидравлическим приводом. Твердый подъемник может следовать за более агрессивным выступом распредвала, а также эффективно работать на более высоких оборотах двигателя. Но если отбросить гоночные двигатели, этот аргумент не имеет значения.

Различия в конструкции подъемника

Для нашего обсуждения твердый подъемник, как следует из названия, представляет собой цельный кусок металла. Это можно рассматривать просто как средство передачи кулачка распредвала на толкатель.Напротив, гидравлический подъемник полый, имеет внутренний поршень, пружину и позволяет маслу входить и выходить.

Аналогично гидравлическому поршню ковша трактора, моторное масло поступает в полость гидравлического подъемника. Когда клапан закрыт, подъемник находится на основной окружности кулачка (круглая часть выступа), и его полость заполняется маслом. Внутренний поршень теперь находится на максимальном подъеме, так как масло находится под ним.

Когда распределительный вал вращается и открывает клапан, поршень прижимается вниз, и обычно используется контрольный шар для закрытия впускного отверстия для масла.Поскольку масло считается несжимаемым, поршень не может двигаться, потому что масло задерживается под ним и на дне полости. Толкатель теперь работает как сплошной подъемник и передает движение от выступа распределительного вала к толкателю.

Во время подъема распределительного вала и из-за давления пружины клапана масло вытесняется из полости подъемника к тому моменту, когда подъемник останавливается на передней части кулачка. По завершении хода подъемника на выступе давление толкателя на поршень уменьшается, и он переходит в исходное положение.Теперь полость заполнена маслом.

Диагностика и регулировка

Если двигатель с гидравлическими подъемниками шумит, либо внутренняя пружина потеряла некоторое натяжение, либо контрольный шарик не уплотняет или не позволяет маслу заполнить полость. Лекарство — замена толкателя.

При регулярной замене моторного масла и предотвращении чрезмерного увеличения оборотов двигателя гидравлические подъемники будут работать в соответствии с конструкцией в течение неограниченного времени. Большинство гидравлических подъемников выходят из строя из-за плохого обслуживания.

Чтобы определить, какой подъемник шумит, снимите крышку клапана, запустите двигатель и дайте ему поработать на холостом ходу.Ожидайте масляные брызги: примите меры предосторожности. Затем, используя длинный удлинитель 3/8 дюйма, осторожно надавите на коромысло, где он соединяется с толкателем. Это поглотит часть ударов внутреннего поршня подъемника и изменит звук.

Из-за усилий, необходимых для замены вышедшего из строя подъемника, целесообразно заменить их все. Если наденут один, то вскоре последуют остальные. Кроме того, во время запуска избегайте работы сухих подъемников с кулачками распределительного вала, покрывая их нижние поверхности смазкой для двигателя перед установкой.

Некоторые двигатели используют гайку с резьбой на шпильке коромысла для регулировки предварительного натяга, в то время как другие устанавливают регулировочную шайбу под стойку коромысла. В других конструкциях, использующих коромысло, регулировка является саморегулирующейся, если установленная высота клапана является правильной и толкатель имеет надлежащую длину.

Независимо от конструкции, хорошее правило — вращать толкатель между пальцами, и когда вращение больше невозможно, будет достигнута правильная предварительная нагрузка. Если используется коромысло, установленное на шпильке, добавьте гайки на четверть поворота после того, как будет установлен предварительный натяг толкателя.Гидравлические подъемники

Руководство покупателя — Блог MaXpeedingRods

Что такое гидравлические подъемники?

Гидравлические толкатели для клапанов, также известные как гидравлические толкатели, являются ключевой частью любого клапанного механизма. Их цель — вернуть клапан обратно в его седло после того, как он был приведен в действие распределительным валом. Эта простая, но важная операция гарантирует, что ваши клапаны действительно закроются после того, как они были открыты. Без исправного подъемника клапана работа двигателя была бы невозможна.Для подъемников гидравлических клапанов используется моторное масло, чтобы поддерживать нулевой зазор клапанов в двигателе. В отличие от подъемников со сплошным клапаном, подъемники с гидравлическими клапанами не требуют регулярной регулировки и обслуживания. Кроме того, поскольку они поддерживают постоянный нулевой зазор клапана или зазор клапана, подъемники гидравлических клапанов снижают шум двигателя, увеличивают срок его службы и сокращают объем технического обслуживания.

Как работают гидравлические подъемники?

По сути, каждый гидравлический подъемник состоит из полого стального цилиндра и поршня или плунжера внутри цилиндра.Масляный насос двигателя создает давление масла, прогоняя масло внутри подъемников через небольшие отверстия. Масло входит и заполняет пустое пространство за плунжером, когда клапан закрыт, это приводит к нулевому зазору клапана, поскольку давление масла давит на плунжер, поэтому он постоянно контактирует с распределительным валом или толкателем распределительного вала. Все гидравлические подъемники оснащены односторонними клапанами, которые позволяют маслу поступать, но не выходить. Когда клапан начинает открываться, когда распределительный вал поворачивается к своей наивысшей точке подъема и давит на подъемник, односторонний клапан предотвращает выталкивание масла из подъемника.Ключевым свойством моторного масла является то, что оно практически несжимаемо, поэтому, когда распределительный вал нажимает на подъемник, это свойство моторного масла заставляет гидравлические подъемники действовать как твердые подъемники и позволяет распределительному валу открывать клапаны.

Все это означает, что гидравлические подъемники более бережно воздействуют на клапанный механизм по сравнению с монолитными подъемниками. Поскольку гидравлические подъемники способны поддерживать нулевой зазор клапана, они уменьшают агрессивное воздействие внезапно закрывающихся клапанов на высоких оборотах двигателя.Твердые подъемники должны поддерживать зазор между кулачком и подъемником, что означает, что возврат клапана на свое седло будет более резким и не будет эффекта амортизации. С другой стороны, гидравлические подъемники следуют за кулачком на всем протяжении его вращения, обеспечивая отсутствие хлопка клапанов, когда они возвращаются на свое место. Это снижает уровень шума и продлевает срок службы клапанного механизма двигателя.

Гидравлические роликовые подъемники и гидравлические плоские толкатели


Роликовые подъемники и плоские толкатели являются гидравлическими подъемниками, поэтому они работают одинаково, но имеют разную конструкцию поверхностей, контактирующих с распределительным валом.Как следует из названия, роликовые подъемники имеют ролики в нижней части подъемника, которые катятся по выступу распределительного вала. Плоские толкатели, вопреки своему названию, на самом деле имеют слегка выпуклую поверхность, которая скользит по кулачку. Как всем известно, качение создает меньшее трение, чем скольжение, а это означает, что подъемники с гидравлическими роликами облегчают вращение распределительного вала, что помогает снизить паразитные потери мощности и помогает двигателю развивать большую мощность. Но у гидравлических роликовых подъемников есть еще одно ключевое преимущество перед плоскими толкателями, так как они позволяют распредвалу работать с гораздо более агрессивными профилями и еще больше улучшают производительность.

Гидравлический роликоподъемник позволяет использовать более агрессивные профили распределительного вала, поскольку он устраняет риск царапания или заедания, присущий плоскому толкателю. Плоские толкатели, хотя и менее дорогие, имеют ограничения, когда речь идет о наклонной плоскости распределительного вала, поскольку слишком большой наклон фактически приведет к врезанию плоского толкателя в профиль кулачка. С более агрессивным профилем распределительного вала клапаны можно закрывать и открывать намного быстрее, а это означает, что у клапанов больше времени, чтобы оставаться открытыми, поэтому распределительный вал с роликовым подъемником может работать намного дольше.Вот почему установки роликового подъемника часто требуют более жестких пружин клапана для управления более агрессивным и быстрым движением клапанного механизма.

Кроме того, гидравлические роликовые подъемники также обладают повышенной прочностью. Роликовый подъемник с меньшей вероятностью выйдет из строя, потому что, в отличие от плоского толкателя, он не так сильно зависит от смазки разбрызгиванием. Еще одним преимуществом является то, что роликовые подъемники совместимы с обычными стандартными маслами и не требуют масел с высоким содержанием цинка и / или добавок, таких как плоские толкатели.

Почему стоит покупать гидравлические подъемники у MaXpeedingRods?

  • Все гидравлические подъемники MaXpeedingRods имеют жесткие внутренние допуски для надлежащего контроля масла и бесшумной работы.
  • Гидравлические роликоподъемники MaXpeedingRods оснащены высококачественными подшипниками, осями и колесами в сборе, которые повышают их прочность и обеспечивают долговечность.
  • Все наши гидравлические подъемники имеют прецизионные клапаны и оснащены высокоточной системой измерения расхода, которая обеспечивает надлежащее движение масла по подъемнику в любых условиях эксплуатации.
  • Все наши гидравлические подъемники проходят прецизионную обработку, чтобы гарантировать, что они идеально подходят для замены вашего двигателя и соответствуют или превосходят все спецификации OEM.
  • Чтобы получить профессиональную помощь в выборе подходящего гидравлического подъемника для вашего двигателя, свяжитесь с нами через: www.maxpeedingrods.com. (Используйте код: Blog , чтобы получить скидку 10%)

Признаки неисправности гидравлического подъемника и обслуживание

В целом гидравлические подъемники не требуют технического обслуживания, а при регулярной замене моторного масла они обычно служат очень долго. Признаком выхода из строя гидравлического подъемника является повышенный шум клапанного механизма. Мусор, шлам и другие остатки в моторном масле, которые не были заменены вовремя, могут заблокировать подъемник гидравлического клапана, что сделает его неспособным поддерживать нулевой зазор клапана, что приведет к дребезжанию и стуку из вашего клапана, что может быть в чем-то похоже на это слышно от толкателей с твердым клапаном.Как правило, подъемник гидравлического клапана чувствителен к частоте и качеству замены масла. Низкокачественные масла с недостаточным содержанием моющих средств неэффективны для предотвращения образования отложений, которые быстро заблокируют подъемники клапанов и не только увеличат шум, но также увеличат износ и нагрузку на весь клапанный механизм. Вот почему так важно использовать масло хорошего качества и вовремя менять его в двигателях, оборудованных гидравлическими подъемниками.

4 признака неисправного гидравлического подъемника (и стоимость замены)

Внутреннее устройство вашего автомобиля является загадкой для большинства водителей.И это становится еще более справедливым, когда вы начинаете говорить о более технических деталях двигателя. Но эти технические детали имеют такое же значение, как и их более известные аналоги, и если они начнут выходить из строя, вы это заметите.

Одним из таких неотъемлемых технических компонентов является гидравлический подъемник. Если вы подозреваете, что у вас неисправный гидравлический подъемник, или вы просто хотите знать, на что обращать внимание, мы разберем все это здесь.

Затем мы подробно разберем, что делает гидравлический подъемник, где вы можете найти его в своем двигателе и сколько стоит его замена (предупреждение о спойлере — это недешево!).Давайте начнем с поиска знаков:

Наиболее частым признаком неисправности гидравлического подъемника являются пропуски зажигания в двигателе на холостом ходу или при ускорении вместе с шумом двигателя. В большинстве случаев это также приведет к включению контрольной лампы проверки двигателя на приборной панели.

То, что гидравлические подъемники являются техническим компонентом, которого вы не видите, не означает, что он не сломается. Гидравлические подъемники изнашиваются, а это приводит к большим проблемам.

Вот более подробный список наиболее распространенных признаков неисправности гидравлического подъемника:

Признаки неисправности гидравлического подъемника

1.Чрезмерный шум двигателя

Если один из гидравлических подъемников вашего автомобиля застрянет или сломается, вы обязательно услышите это. Вы не только слышите лязг металла, когда они трутся друг о друга, но также слышите удары внутренних частей гидравлического подъемника о самого себя.

По мере того, как вы разгоняете свой автомобиль до более высоких оборотов, эти звуки будут становиться громче и чаще, поскольку подъемник пытается действовать все быстрее и быстрее, но не может этого сделать.

2. Пропуски зажигания в двигателе

Гидравлические подъемники соединяются с толкателями (в некоторых моделях автомобилей), которые соединяются с коромыслами, управляющими впускными и выпускными клапанами.Таким образом, если гидравлический подъемник не работает должным образом, тогда ваши выпускные или впускные клапаны не будут открываться и закрываться, когда они должны.

Это означает, что ваш двигатель не будет производить необходимое сгорание, что приводит к пропускам зажигания. Когда ваш двигатель перестанет работать, вы услышите разницу в звуке и заметите снижение производительности. Если в вашем двигателе возникают перебои в работе, вам необходимо как можно скорее доставить его в ремонтную мастерскую, чтобы не было больше повреждений.

3. Сломанные толкатели и мертвые цилиндры

Если двигатель вашего автомобиля представляет собой двигатель с верхним расположением клапанов, он имеет толкатели, соединяющие распределительный вал и впускной или выпускной клапан.Они могут выйти из строя, если ваш гидравлический подъемник неисправен.

Вся причина, по которой в вашем двигателе есть подъемный цилиндр, заключается в том, что толкатель каждый раз толкается в одном и том же направлении. Если у вас сломан гидроцилиндр подъема, толкатели тоже нередко изгибаются или ломаются.

Если это произойдет, у вас не просто будет выпускной или впускной клапан, который не работает оптимально — у вас будет такой, который вообще не работает. Когда цилиндр полностью перестает работать, это называется «мертвым цилиндром», и вы заметите значительное снижение производительности.

Кроме того, вы заметите, что ваш двигатель работает некорректно. Если у вас мертвый цилиндр, вам необходимо немедленно проверить его, и это больше, чем просто восстановление мощности вашего двигателя. Если у вас мертвый цилиндр, и вы не отремонтируете его, это лишь вопрос времени, когда вы еще раз повредите свой двигатель.

4. Проверьте свет двигателя

В вашем двигателе повсюду датчики. Они контролируют все, от количества поступающего воздуха до химического состава выхлопных газов.Все в вашем автомобиле — это отлаженная машина, и для ее сохранения требуется как можно больше входных данных.

Итак, логично, что если все не работает должным образом, некоторые из этих датчиков обнаружат проблему. Есть несколько сигнальных ламп, которые могут загореться, если у вас неисправный гидравлический подъемный цилиндр, но одно можно сказать наверняка — вы получите световой сигнал проверки двигателя.

Функция гидравлического подъемника

Единственная задача гидравлических подъемников вашего автомобиля — передавать усилие от выступа распределительного вала на клапаны.Чтобы клапаны оставались закрытыми, им нужен небольшой люфт между распределительным валом и клапаном, потому что металл движется, когда он теплый. Задача гидравлического подъемника — контролировать этот люфт.

Гидравлические подъемники

имеют преимущество перед механическими подъемниками, поскольку они располагаются непосредственно напротив выступов распределительного вала, где традиционные подъемники должны оставлять небольшое пространство для расширения при нагревании.

Хотя принцип работы подъемника немного отличается, они выполняют ту же функцию.В то время как в большинстве транспортных средств по-прежнему используются гидравлические подъемники, механические подъемники начинают возвращаться из-за их более низкой стоимости.

Хотя нет ничего неправильного в выборе, сплошные или механические подъемники не нуждаются в обслуживании, и вы заметите небольшое снижение производительности, поэтому гидравлические подъемники с самого начала нашли свое применение в транспортных средствах.

Расположение гидравлических подъемников

Гидравлические подъемники расположены непосредственно между распределительным валом вашего двигателя и клапанами в большинстве моделей автомобилей, но на некоторых моделях автомобилей также есть толкатели и коромысла.

Поскольку расположение распределительного вала может варьироваться, это немного затрудняет определение того, будут ли ваши гидравлические подъемники находиться вверху или внизу вашего двигателя.

Но если вы обнаружите, что ваш распредвал и в вашем автомобиле есть гидравлические подъемники, то они именно там. Даже если в вашем автомобиле нет гидравлических подъемников , там будет какой-то механический подъемник. Вы никогда не увидите автомобиль, в котором распределительный вал прижимается непосредственно к толкателям или клапанам.

Стоимость замены гидравлического подъемника

Средняя стоимость замены гидравлического подъемника составляет от 100 до 1100 долларов, в зависимости от модели автомобиля и стоимости рабочей силы. Один гидравлический подъемник стоит от 5 до 30 долларов, а оплата труда — от 100 до 1000 долларов.

Гидравлические подъемники — один из тех компонентов, которые дешево купить, но дорого заменить. Это потому, что каждый гидравлический подъемник стоит всего от 5 до 30 долларов, но добраться до них — это полторы работы. Кроме того, хотя каждый подъемник может быть дорогим, вам следует заменить их все сразу, а в вашем двигателе их много.

Фактически, ваш двигатель имеет от восьми до двадцати четырех подъемников, в зависимости от того, на чем вы водите.При этом стоимость одних деталей составляет от 40 до 1000 долларов.

Кроме того, затраты на рабочую силу для замены подъемников могут составлять от 300 до 700 долларов. Это означает, что если вам повезет, вы можете выполнить работу менее чем за 400 долларов, но если вам не повезет, это может стоить до 1700 долларов. Средняя стоимость обычно составляет от 500 до 800 долларов.

Битва лифтеров: плоский толкатель против ролика, твердый против гидравлического

Давайте сразу перейдем к делу: мы любим лифтеров. Это то, что нам всем легко понять.Они выполняют очень простую работу — работают между толкателями и распределительным валом, помогая открывать клапаны. Однако эти маленькие жукеры могут серьезно повлиять на производительность.

По мере того, как вы будете строить свой двигатель, вы услышите много голосов, кричащих вам в ухо. Будь то твердый плоский толкатель — на основе ностальгии — или гидравлический — на основе уличных способностей — или, может быть, даже потратить деньги на модный набор роликов. Но что лучше для вас и почему?

Плоский толкатель и ролик

Я не собираюсь тянуть дым и зеркала или делать вид, будто это не та тема, которую посещают регулярно.Сразу скажу, что роликовые кулачки и подъемники — в значительной степени лучший универсальный выбор. (При условии, что бюджет и правила мероприятия не имеют значения.)

Имея это в виду, выбирает ли их каждый производитель двигателей? Нет. Почему бы и нет? Ну, потому что бюджеты могут быть ограниченными, правила могут быть ограничительными, и, конечно же, есть пуристы и традиционалисты.

В случае, если вы планируете участвовать в гонках, класс, в котором вы соревнуетесь, может не позволить вам использовать роликовый распределительный вал. Что-то вроде классов Pure Stock не позволит использовать роликовый кулачок или вообще любой кулачок, который не входит в диапазон заводских спецификаций кулачка для вашего двигателя.Это делается для того, чтобы конкуренция была честной, поэтому, чтобы соревноваться, вам нужно соблюдать.

При этом роликовые подъемники будут предлагать значительные преимущества в мощности наряду с более плавной работой двигателя. Одна из причин заключается в том, что роликовые подъемники имеют меньшее трение на распределительном валу, что облегчает вращение кулачка. Кроме того, лепестковые профили могут быть гораздо более агрессивными. Кулачок может открывать и закрывать клапаны намного быстрее, а это значит, что они могут дольше удерживать клапан в состоянии полного подъема.Это из-за роликов в нижней части подъемника — гладкая поверхность качения позволяет использовать более агрессивные лопастные шлифовальные машины, поскольку они не царапают и не заедают, как поверхность плоского толкателя.

Но не верьте нам на слово …

Из SuperChevy: «. Большим преимуществом роликовых кулачков перед их собратьями с плоскими толкателями является не меньшее трение, о котором сразу думает большинство людей, а повышенная скорость толкателя (т. Е. Более высокая скорость нарастания).Эта увеличенная скорость — до 30 процентов — означает большую мощность. … Более агрессивная скорость нарастания роликовых кулачков обычно требует более высоких нагрузок пружины для управления движением клапанного механизма.

Еще одно важное преимущество роликовых кулачков — повышенная долговечность. Ролики имеют гораздо меньшую вероятность выхода из строя по сравнению с плоскими толкателями, поскольку они не так сильно зависят от брызг масла, чтобы поддерживать правильную работу. Кроме того, для плоских кулачков толкателя выбор правильного давления пружины гораздо более критичен по сравнению с более щадящей конструкцией роликов.Именно благодаря этой надежности производители в серийных автомобилях перешли от плоских кулачков к роликовым кулачкам. Это также то, что делает роликовый клапанный механизм лучшим выбором для уличного двигателя с хот-родом ».

Но это обойдется тебе…

Главным недостатком здесь всегда считалась цена и установка. Если вы можете купить комплект плоских кулачков толкателя примерно за 120 долларов, то комплект роликовых кулачков обойдется вам примерно в 700 долларов. Это также две низкие цены — если вы собираетесь покупать у высококачественных брендов, таких как COMP, вы выбираете плоский толкатель за 180 долларов и каток за 1000 долларов.Итак, вы платите за силу бренда.

Что касается установки, вы, возможно, слышали, что установка роликовых кулачков может быть сложной задачей. «Это правда, что роликовый кулачок и подъемники стоят больше, чем плоский кулачок толкателя и подъемник. Но это не обязательно правда, что вам нужно многое изменить в своем двигателе, чтобы работал с роликовым кулачком », — объясняет HOT ROD. «В зависимости от выбранного помола, возможно, вам не придется добавлять в двигатель более одной или двух частей».

Имея это в виду, если вы можете установить плоский кулачок толкателя в двигатель, у вас не должно возникнуть особых проблем с установкой роликового кулачка самостоятельно.Пружины клапанов часто меняются (как обычно), и, если двигатель переключается с плоского толкателя, часто требуется фиксатор распределительного вала. Это связано с тем, что разница между характером шлифовки кулачков не ограничивается тем, насколько агрессивно эти распредвалы открывают клапаны.

На плоских распределительных валах кулачков кулачки иногда наклонены под небольшим углом к ​​задней части блока. Это сделано для того, чтобы подъемник мог вращаться во время работы. Он не только способствует износу подъемника, но и втягивает кулачок в двигатель при его вращении.Без такого шлифования кулачок может скользить вперед и назад. Роликовые кулачки не обладают этой конструктивной особенностью, и для удержания кулачка на месте потребуется фиксатор.

Твердый и гидравлический

Существует много споров о гидравлических и цельнолитых подъемниках, но есть несколько ключевых факторов, которые вступают в игру при использовании любого типа подъемников в мире производительности. Твердые подъемники — это простые твердые куски металла, которые скользят по поверхности кулачков и работают, чтобы немного больше приоткрыть клапаны двигателя.Гидравлические подъемники предназначены для выполнения той же самой работы, но они перекачивают масло в верхнюю часть клапанного механизма через толкатели.

Гидравлические подъемники требуют минимального технического обслуживания, и вам не придется тратить много времени, беспокоясь о предварительной нагрузке за пределами первоначальной установки. (Предварительный натяг — это расстояние, на котором толкатель садится внутри подъемника. Это важно для того, чтобы подъемники могли двигаться.)

Для сплошных подъемников необходимо время от времени устанавливать и регулировать зазор клапана.(Зазор клапана — это зазор между коромыслом и концом ствола клапана.) Это важная настройка, поскольку она определяет производительность и срок службы клапанного механизма и будет поддерживать продолжительность работы клапана и подъем в соответствии со спецификациями кулачка.

Когда использовать гидравлический или твердый

Традиционно считается, что у гидравлических подъемников есть общее слабое место: насосная конструкция. Этот тип подъемника немного сжимается, когда кулачок толкает вверх, а сопротивление коромысел удерживает толкатель на месте.Это создает небольшой буфер, из-за которого они открывают клапаны немного медленнее, чем это делают сплошные подъемники. На уличном транспортном средстве дополнительная защита клапанного механизма делает эту жертву оправданной. Однако на гусеничных автомобилях с высокими оборотами такая потеря реакции может отрицательно сказаться на реальных характеристиках.

Тем не менее, важно отметить, что подъемная техника уже не та, что была раньше. «Гидравлические роликовые подъемники высокие и тяжелые по сравнению с подъемниками с плоским толкателем, а также подвержены накачиванию», — говорит СуперЧеви.«Но с учетом достижений в конструкции гидравлических подъемников, а именно подъемников с коротким ходом, более узких зазоров гидравлических поршней и легких компонентов клапанного механизма, многие двигатели, оборудованные гидравлическими подъемниками, могут легко выдерживать 7000 об / мин и более».

В то время как SuperChevy здесь имеет в виду роликовые подъемники, то же самое время от времени справедливо и для плоских кулачков толкателя. Хотя, если вы решите использовать гидравлический подъемник на высокооборотистом двигателе, вы должны убедиться, что распределительный вал может работать на тех оборотах, которые вы собираетесь дотянуться и коснуться.

Имея это в виду, если вы намереваетесь перейти на более широкие RPM, я буду первым, кто продвигает осторожность и надежность. Почему? Ну просто меньше частей, которые нужно сломать. Твердые лифтеры не накачиваются и не рухнут, потому что они просто не могут. Я не говорю, что это единственный путь, но когда клапанный механизм движется со скоростью 8000 об / мин, предел погрешности становится чрезвычайно малым, и чем меньше факторов задействовано, тем безопаснее можно себя чувствовать.

Когда использовать плоский толкатель

Хотя принято считать, что роликовые кулачки всегда будут лучше, иногда использование плоского толкателя все же является хорошим выбором.Давайте не будем забывать, что в течение десятилетий , плоские распредвалы с толкателем были единственным вариантом на рынке, и ребята, управлявшие ими, могли легко преодолевать четверть мили, овальную трассу, дорожные трассы или любой другой тип гоночной трассы на планете.

Итак, роликовые кулачки и подъемники лучше? да. Но являются ли они единственным вариантом для реальной работы? Точно нет. Это фантастический вариант, как и плоские кулачки толкателя. Плоские кулачки толкателя очень просты, и, хотя установка роликового кулачка не за горами с точки зрения сложности установки, плоские толкатели установить проще простого.

Давайте также не будем забывать, что их гораздо больше, и у вас больше шансов найти то, что вы ищете в местном масштабе. Техническое обслуживание любого из них примерно одинаково с точки зрения процесса. Но если у вас возникнут проблемы с роликовым кулачком и вам нужно заменить подъемники, вы потратите немного больше денег. По сути, если плоский толкатель — это то, что вы можете себе позволить, или если это именно то, что вы предпочитаете, то качайте его и вперед.

Мы уверены, что у вас есть мнение по этому поводу — взвесьте ниже.

Нравится:

Нравится Загрузка …

Связанные

Является ли накачка гидравлического подъемника реальной проблемой сегодня?

Есть давнее решение, которое должны принять производители высокопроизводительных двигателей: гидравлические подъемники или твердые подъемники? Как правило (или, точнее, традиционно) школа мысли заключалась в том, что гидравлические подъемники были лучшим выбором для уличных двигателей, которые накапливали много миль при различных оборотах, а твердые частицы лучше подходили для гоночных двигателей, которые проводят больше времени на высоких оборотах. -Об / мин и регулярно перестраивались.

Эти мнения были созданы еще в эпоху плоских толкателей и последовали за соответствующими конструкциями в современное поколение роликов. Поскольку гидравлические подъемники не требовали регулировки после установки, они были предметом с меньшими затратами в обслуживании, что были бы оценены уличными энтузиастами. Нанесение ударов плетью было искусством, предназначенным только для более хардкорных гонщиков. Безусловно, стабильность солидного подъемника обеспечивала стабильность и прочность, чтобы выдерживать длительные периоды использования на высоких оборотах, и, установив минимальный зазор, каждая тысячная доля дюйма драгоценного подъема и каждый градус продолжительности передавались на каждый клапан. .

На холостом ходу снижение давления масла позволило бы немного более цивилизованно работать на холостом ходу в гидравлических конструкциях, в то время как твердые частицы потребовали бы идеальной регулировки, чтобы обеспечить характерный «четкий» прерывистый звук холостого хода и необходимое улучшение механических характеристик.

Что ж, фанаты гонок, сейчас уже далеко за двадцать, и большинство этих древних мифов развенчаны. Современные технологии и передовые технологии стирают грань между гидравликой и твердыми телами. Несмотря на то, что долговечность обеих конструкций с годами увеличилась (в основном благодаря улучшенным материалам, более жестким допускам и более широким поверхностям подшипников качения), реальные успехи были достигнуты на гидравлической стороне ограждения.

Это изображение было разработано, чтобы показать различные фазы выступа кулачка, но мы также можем увидеть, как гидравлический подъемник с плоским толкателем на иллюстрации полагается на свою внутреннюю пружину и проходящее через нее масло, чтобы работать как амортизатор, когда кулачок вращается против Это.

Современные разработки привели к созданию более точных систем плунжера, пружины и фиксатора. Это привело к более последовательному контролю жидкости как в лифтах, так и вне их. В сочетании с остальными вышеупомянутыми достижениями и десятилетиями исследований каждой части конструкции подъемника современный гидравлический роликовый подъемник почти не уступает своему надежному аналогу.Преимущества гидравлической конструкции, особенно отсутствие необходимости устанавливать люфт или регулировать что-либо после того, как она установлена ​​должным образом и заблокирована, приносит много пользы энтузиастам, чьи клапанные крышки труднодоступны.

Современная тенденция к турбонаддуву привносит приверженность к относительно экзотической сантехнике. Глубокий отказ двигателя современных автомобилей с высокими рабочими характеристиками делает установку крышек клапанов реальной проблемой. Отсутствие необходимости делать это между гонками (или, в крайнем случае, между раундами) — настоящий подарок.Несомненно, улучшенная конструкция замков с полиамидными замками действительно помогла свести к минимуму необходимость регулирования зазора клапана на регулярной основе. По сравнению с ранними частями гонщиков десять или двадцать лет назад ситуация значительно улучшилась.

Высококачественные гидравлические роликовые подъемники высшего качества, подобные этим агрегатам от Howards Cams, обладают широким спектром преимуществ. Более высокие корпуса обеспечивают повышенную поддержку, сокращая при этом требования к толкателям (более короткие толкатели имеют меньший потенциал изгиба). Стяжка удерживает подъемники идеально выровненными по выступам кулачка.

Накачка

Вопрос в том, можно ли поднять гидравлический подъемник выше точки регулировки, преодолеть всю его предварительную нагрузку и впоследствии удерживать клапан в открытом состоянии? Это явление называется «накачкой», и люди утверждают, что именно это видели или испытали, но у очень немногих есть подлинные доказательства.

Многие из нас испытали хорошо задокументированный феномен смещения клапана, когда пружины клапана слишком слабы, чтобы успевать за действиями клапана, и клапан не может полностью закрываться.Могут ли люди путать поплавок клапана с подкачкой подъемника?

Мы напрямую поговорили с парой самых опытных экспертов по спортивным гонкам и получили их мнения. Мы многому научились, и мы думаем, что вы тоже научитесь.

Мы спросили Бена Хергейма из Howards Cams, знакомого с концепцией накачки гидравлического подъемника, не мог бы он объяснить, как может происходить накачка, и что мы можем сделать, чтобы ее предотвратить. «Накачивание может быть результатом нескольких проблем в гидравлическом клапанном агрегате. Чаще всего встречается динамическая нестабильность системы.Это происходит, когда пружина не может удерживать контакт между компонентами системы из-за недостаточной нагрузки на пружину », — поясняет Хергейм. «Редкое явление« накачки »непостоянно во всем диапазоне оборотов. Это может произойти только тогда, когда запас пружины или жесткость системы станут недостаточными ».

«Иногда для решения этой проблемы можно использовать пружины с более высокой нагрузкой или необходимо изменить профиль кулачка. В других случаях накачка может быть вызвана отклонением системы, когда один или несколько компонентов системы фактически изгибаются достаточно, чтобы разгрузить запорный шар, и подъемник реагирует, заполняясь маслом », — говорит Хергейм.«К сожалению, он заполнен до более высокого уровня, чем необходимо, и может удерживать клапан от седла. Температура масла могла вызвать это при холодном пуске, если давление масла было достаточно большим, чтобы выдержать нагрузку от установленной пружины клапана. Однако оно должно быть довольно высоким ».

Не для всех гидравлических роликовых подъемников требуются стяжки для предотвращения вращения. Гидравлические роликоподъемники LS (на фото) используют подъемные лотки, которые входят в зацепление с плоскими поверхностями на корпусе подъемника, чтобы предотвратить вращение, в то время как OEM-роликовые малые блоки Ford используют скобу «паук», чтобы удерживать фиксаторы «собачьей кости», которые входят в зацепление с плоскими поверхностями и удерживают роликовые колеса выровнены с выступом кулачка.

Билли Годболд, главный инженер по проектированию клапанов Comp Cams, считает, что энтузиасты видят что-то, что может быть ошибочно принято за накачку, и это все еще проблема, которую необходимо решать.

«Речь идет о скорости отвода воздуха и эффективном зазоре (зазоре), которые сокращают динамическую продолжительность и стабильность гидравлической роликоподъемной системы на высоких оборотах», — поясняет Годболд. «Хотя отскок клапана может привести к тому, что гидравлическая система удерживает клапан в открытом состоянии, не существует реального механизма, который можно было бы точно описать как« накачивание ».«Клапан подпрыгивает, и тупая гидравлическая система просто настраивается, чтобы удерживать его в течение долгого времени».

«Хотя скорость слива определенно изменяет динамическую продолжительность, и она изменяется в зависимости от числа оборотов в минуту и ​​всевозможных других влияний, мы не видели ничего, что можно было бы точно описать как« накачка ». Самое близкое, что мы видели на Spintron — это когда вы впадаете в серьезный отскок клапана », — говорит Годболд. «В отличие от сплошного отскока подъемника, который имеет естественную симметричную параболическую форму, при значительном отскоке гидравлической системы внутренний поршень может двигаться вверх и удерживать клапан в открытом состоянии на дополнительные 50 градусов поворота кривошипа.Я полагаю, что ребята, работавшие на динамометрических станциях с двигателями в 70-90-х годах, увидели зазор топлива над карбюраторами, когда это произошло, и они знали, что впускной клапан удерживался открытым ».

«Хотя эта часть их гипотезы была верной, механизм был инициирован отскоком клапана, а затем автоматической регулировкой подъемника, а не какой-либо« накачкой »гидравлического подъемника», — объясняет Годболд. «Изготовитель двигателей [и многократный чемпион Engine Masters Challenge] Джон Каас однажды рассказал мне историю о своем опыте работы с насосом гидравлического подъемника.Ни он, ни я не можем полностью объяснить это… »

«У них был внутренний обратный клапан, который застрял в масляном насосе, и давление масла резко упало на более высоких оборотах. Этот двигатель гидравлического подъемника действовал точно так же, как «накачка» из учебника. Поршень высокого давления имеет площадь поверхности чуть меньше половины квадратного дюйма, поэтому можно предположить, что для преодоления 150 фунтов на квадратный дюйм потребуется давление масла почти 400 фунтов на квадратный дюйм. / весной », — говорит Годболд. «При таком расчете даже не упоминаются сумасшедшие силы инерции в 1500 с лишним фунтов, возникающие при открытии и закрытии клапанов, но как только Джон заменил неисправный масляный насос, двигатель заработал нормально!»

Характеристика Значение Единица измерения Банкноты
Диаметр поршня гидравлического подъемника.625 дюймов Типично для большинства гидравлических подъемников
Площадь поршня. 307 квадратный дюйм Площадь = Пи (R) в квадрате
Давление масла 100 фунтов на кв. Дюйм фунтов силы на квадратный дюйм
Усилие на толкателе 30,7 фунтов силы F = давление x площадь
Передаточное число коромысла 1,7: 1 Усилие на наконечник уменьшается за счет передаточного числа коромысла
Полная сила, действующая против нагрузки на седло пружины 18.0 фунтов силы Для типичных уличных нагрузок на сиденье этих значений может быть достаточно, чтобы компенсировать более 10% общей нагрузки на седло пружины, но не достаточно, чтобы преодолеть общую нагрузку на сиденье.

Вот таблица быстрого расчета с действительными числами силы, действующей для открытия клапана. Вам придется приблизиться к давлению масла в 1000 фунтов на квадратный дюйм, чтобы фактически преодолеть нагрузку на седло клапана, но даже 100 фунтов на квадратный дюйм могут компенсировать десять или более процентов нагрузки на седло.

Интересно, но это опыт из вторых рук, который Годболду не удалось воспроизвести. «Я никогда не видел ничего подобного на Спинтроне, но мы никогда не взрывались из-за давления масла. Мы могли бы, вероятно, сделать подъемник [перекрыть пружину клапана], но математические расчеты выглядят искаженными против того, чтобы это было возможно, пока давление масла не превысит 150 фунтов на квадратный дюйм », — говорит Годболд. «В этот момент вы можете эффективно снять почти 50 фунтов нагрузки на седло с пружины и тем самым сделать вашу систему нестабильной, что приведет к отскоку вверх, а затем удержанию впускного клапана в открытом положении на 30 с лишним градусов, как я описал первоначально.”

Гонщики

— изобретательная порода, и в прошлом они пробовали многое, чтобы использовать более агрессивные распредвалы, будучи ограниченными гидравлическими подъемниками. «Есть некоторые уловки, которые были опробованы с использованием профилей с плотными зазорами на сплошных подъемниках с очень высоким спуском, но это не очень эффективно, поскольку вы обычно устанавливаете зазор на высоте сплющенного подъемника, и для этого лучше использовать подъемник. солидный лифтер, — рассказывает Годболд. «Подъемник Comp Cams с« коротким ходом »имеет меньшую камеру высокого давления и может работать либо с более агрессивным профилем, либо с более высокими оборотами, и оба пути используются довольно успешно.Единственный фактор, который следует учитывать при использовании этого подъемника, — это то, что предварительная нагрузка должна быть установлена ​​точно ».

На этом разрезе на виде сбоку показана камера высокого давления, в которой циркулирует и прокачивается драгоценная смазка. Вы также можете увидеть описанную в тексте пружину, которая, по некоторым ощущениям, подавлена ​​высоким давлением масла. Исследования доказали, что это явление встречается очень редко.

Есть и другие факторы, которые влияют на поведение подъемника, например, само моторное масло.«И температура масла, и аэрация играют главными факторами в эффективной жесткости подъемника. По мере того, как масло обычно становится более аэрированным при более высоких оборотах, а инерционные нагрузки на толкатель резко возрастают, мы действительно видим, что гидравлические подъемники «действуют» так, как будто у них больше ударов при оборотах », — говорит Годболд.

При изменении температуры масла меняется и его фактическая вязкость. «Эффективная продолжительность уменьшается с температурой. Люди были бы шокированы, увидев, насколько эффективный удар гидравлического подъемника меняется в этих условиях.Подъемники с коротким ходом уменьшают этот эффект, но причина, по которой точная регулировка гораздо более распространена в гоночных автомобилях, — это постоянство движения клапана при различных температурах и условиях аэрации масла », — говорит Годболд. «Я ненавижу быть излишне критичным, но обсуждать влияние на накачку — все равно что спрашивать, кто победит в битве между снежным человеком и Лох-несским чудовищем. Это такая редкость.

Плоский или роликовый — кто-нибудь в безопасности?

«Внутренняя система регулировки очень похожа как на плоские, так и на роликовые толкатели.Обе системы имеют очень похожую скорость слива. Есть незначительные динамические различия из-за типичных характеристик массы, ускорения и скорости, но в целом эти два типа гидравлических подъемников ведут себя очень похожим образом », — объясняет Годболд.

Хергейм соглашается, говоря: «Как гидравлические роликовые, так и гидравлические плоские кулачки толкателя технически подвержены накачиванию. Мы видели эту проблему в гидравлических роликах чаще, чем в гидравлических кулачках с плоским толкателем. Это происходит из-за значительного веса подъемника и используемых агрессивных профилей кулачков.”

Традиционный подъемник с плоским толкателем остается популярным вариантом начального уровня для энтузиастов с ограниченным бюджетом. Внутренняя инженерия, а также улучшенные материалы и возможности контроля масла делают их отличным выбором для многих. Строгое соблюдение процедур обкатки и использование масла с адекватным уровнем цинка в критический период обкатки — ключ к обеспечению безупречной работы в долгосрочной перспективе.

Годболд продолжил погружаться глубже.«Реальные различия в скорости слива, эффективном зазоре и динамической устойчивости в значительной степени зависят от вязкости масла», — объясняет он. «Как мы уже упоминали ранее, важна фактическая рабочая вязкость, отсюда зависимость от температуры и аэрации масла, а также номинальная вязкость».

Скорость обдува подъемника (которая напрямую связана с эффективной жесткостью и динамической стабильностью подъемника в сборе, а также скоростью, с которой подъемник может регулировать себя), вероятно, является наиболее важным фактором в конструкции гидравлического подъемника.«Допуски между внутренним поршнем подъемника и внутренними стенками корпуса подъемника являются наиболее строго контролируемыми размерами в современном двигателе. Другими словами, попытка заставить гидравлическую систему работать точно и стабильно на высоких оборотах — определенно то, с чего нужно начинать с любого гидравлического катка или подъемника с плоским толкателем ».

Мы спросили Godbold, есть ли на горизонте какие-либо инновации, которых могут ожидать энтузиасты. Он сказал нам, что на полках уже есть много вещей, о которых люди могут не знать, и еще более захватывающие технологии появятся в ближайшем будущем.

«Есть несколько действительно потрясающих новых идей, возникающих в новых конструкциях профилей, более легких компонентах (для снижения нагрузки на гидравлическую систему) и новых клапанных пружинах, которые быстро развиваются. Улучшения в измерении слива и динамических характеристик гидравлики также улучшают существующие конструкции ».

Одна интересная концепция проиллюстрирована в гидравлических подъемниках Howards с переменной продолжительностью работы, изображенных здесь для Ford 5.0L. Рекламируемые как сокращающие продолжительность работы на 10 градусов при 3000 об / мин, они намеренно используют свойство гидравлических подъемников, с которым борется большинство компаний.

«Кроме того, такие специалисты, как Lake Speed ​​из Driven, работают над составами масел, которые более эффективно удаляют микропузырьки при аэрации, снижающей количество масла. В совокупности все это значительно увеличивает безопасный диапазон оборотов гидравлических систем. У нас есть 6,0-литровый двигатель LS, который более 200 раз превышал 9000 об / мин на стенде Comp Cams! »

«Компоненты, которые люди выбирают для своей сборки, часто не все от одного производителя, и это часть удовольствия от гонок и создания хот-родов», — говорит Хергейм.«К сожалению, это также может стать проблемой, если компоненты не подходят для совместной работы друг с другом. Ключ к обеспечению надежности работы клапанного механизма — наличие хорошо подобранных компонентов для требуемой цели ».

После разговора с некоторыми отличными парнями, которые зарабатывают себе на жизнь работой над высококачественными компонентами клапанного механизма, кажется, что подкачка гидравлического подъемника — редкое явление, хотя это остается маловероятной. Как и в случае с большинством проблем в области создания высокопроизводительных двигателей, небольшое исследование, а также тщательный выбор и согласование компонентов должны быть всем, что нужно, чтобы этого никогда не случилось с вами.

Следовательно, ваш выбор клапанных пружин столь же важен и может быть причиной большей вины, которую возлагают на гидравлические подъемники, когда двигатель проникает на территорию с высокими оборотами и внезапно перестает выдавать мощность или набирать скорость.
Наконец, мы можем с уверенностью заключить, что современные гидравлические подъемники полностью способны работать на высоких оборотах с более агрессивными профилями кулачков, чем когда-либо прежде. Если вы проконсультируетесь напрямую с выбранным производителем, то вполне возможно получить пакет клапанного механизма на основе гидравлического подъемника, способный надежно достигать 9000 об / мин.Это означает много веселья без постоянной необходимости проверять или сбрасывать ресницы и знать, что при правильной комбинации частей накачка контролируется в то же время.

В дополнение к их способности контролировать масло и широким поверхностям подшипников качения, новейшие высокие гидравлические роликоподъемники от COMP имеют покрытия, предназначенные для минимизации трения в отверстии подъемника. Это сводит к минимуму нагрев и износ.

Lifters, Lash и Preload. То, чего вы не знаете, не повредит вам или не повредит?

Общаясь с нашими клиентами и просматривая различные автомобильные форумы, я заметил много недоразумений и дезинформации, касающихся работы гидравлического подъемника и технических характеристик предварительной нагрузки.

Я пришел к выводу, что может быть полезно предоставить некоторую информацию по этому вопросу.

Анатомия гидравлического подъемника

Гидравлический подъемник не слишком сложен. Он состоит в основном из корпуса, плунжера и обратного клапана.

Корпус имеет канал для подачи масла, а плунжер имеет поднутрение, которое совмещается с питающим отверстием, независимо от положения плунжера в корпусе или «положения предварительного натяга».Затем масло подается в две полости, одну под поршнем, иногда называемую камерой давления, а другую внутри поршня, который действует как резервуар. Когда клапан закрыт, масло подается через односторонний обратный клапан в камеру давления, где оно поддерживает нулевой зазор клапана, заполняя пространство между плунжером и нижней частью корпуса подъемника.

Когда выступ кулачка воздействует на подъемник, открывая клапан, пружина клапана пытается вытеснить масло обратно из напорной камеры, в результате чего обратный клапан закрывает проход обратно в резервуар.Поскольку жидкость не сжимается, корпус подъемника и плунжер по существу становятся одним твердым элементом, обеспечивающим нормальное срабатывание клапана. Этот саморегулирующийся компонент обеспечивает компенсацию нормального износа и, что более важно, изменяющихся зазоров из-за расширения и сжатия компонентов двигателя при изменении рабочих температур.

Объяснение кровотечения и накачки

Такие термины, как « спуск » и « накачать » иногда используются в обсуждениях с лифтерами.Для всех наших читателей, заботящихся о своем бюджете, вы можете пропустить следующий абзац, поскольку я собираюсь лишить вас невиновности в отношении тех, кто занимается скидками. Невежество — это блаженство, и то, что вы не рассматриваете, не причинит вам вреда, когда вы смотрите в задние фонари конкурента.

Невежество — это блаженство, и то, что вы не рассматриваете, не причинит вам вреда, когда вы смотрите в задние фонари конкурента.

Стравливание обычно относится к маслу в камере сжатия, выходящему между внешней стенкой плунжера и внутренней стенкой корпуса.Это необходимая особенность, встроенная в подъемник, чтобы позволить ему по существу саморегулироваться при каждом цикле включения клапана. Скорость выпуска воздуха определяется внутренним зазором подъемника, что означает, что допуск на обработку должен соответствовать очень высоким стандартам. Материалы и процессы, используемые для этого, отражаются на цене высококачественного подъемника. Небольшой процент подъема и продолжительности воздействия на распределительный вал поглощается гидравлическим подъемником по своей конструкции, поэтому он заслуживает рассмотрения при выборе подъемника.Многие энтузиасты целыми днями торгуются из-за выбора кулачка только для того, чтобы увязать его с недельной скидкой. В зависимости от разброса допусков они вполне могут работать со своим клапанным механизмом с 16 различными характеристиками подъема и продолжительности.

Накачка обычно не является неисправностью подъемника. Подумайте об этом, масло подается через отверстие в камеру фиксированного размера. Как это может пойти не так? Вот способ, клапан тяжелый, пружина клапана слабая, выступ кулачка агрессивно приводит в действие клапан, подобно тому, как бейсбольный питчер бросает фастбол.В этом сценарии клапан отрывается от верхней части лепестка, пытаясь украсть поцелуй у поршня. Пружина клапана, наконец, берет на себя ручку, только теперь она открыта больше, чем следовало бы. Лифтер распознает это и выполняет свою работу, удаляя плетку. Теперь клапан спускается по задней стороне аппарели на обратном пути и обнаруживает, что не может закрыть дверь, потому что подъемник теперь слишком длинный, как ни странно, примерно на том же расстоянии, на котором клапан вылетел из-под контроля. Я надеюсь, что это дает перспективу и интереснее, чем смотреть на данные спинтрона, но суть в том, что управляйте клапаном, и плохой, неправильно понятый лифтер сможет сделать свою работу.

Что такое «предварительная нагрузка»?

Теперь, когда мы лучше понимаем подъемник и его работу, давайте рассмотрим предварительную нагрузку.

Я бы определил предварительный натяг как расстояние, на которое плунжер подъемника проходит от его полного выдвижения до рабочего положения, когда клапан полностью закрыт и все зазоры удалены.

Я вижу много дезинформации о том, что двигатели LS подсчитывают обороты после нулевого зазора, что нормально для стандартных ходовых подъемников, если вы правильно понимаете математику.Я часто вижу, как люди заявляют, что количество резьбы на дюйм равняется ходу поршня, не вводя в уравнение соотношение коромысел. Первый вопрос, который следует задать: каков мой полный ход плунжера подъемника? Большинство производителей качественных подъемников публикуют эту спецификацию. Большинство подъемников с коротким ходом имеют ход около 0,060 более или менее, в то время как обычно используемый подъемник GM LS7 имеет ход 0,200. Если вы не можете найти спецификацию на свой подъемник, простой способ выяснить это — разместить циферблатный индикатор на конце толкателя коромысла с выступом кулачка на его основной окружности.Вверните вручную стопорный болт коромысла, пока все зазоры не будут удалены. Теперь обнулите циферблатный индикатор и затяните стопорный болт коромысла. Вы увидите, как стрелка циферблатного индикатора начнет двигаться, когда давление пружины клапана опускает подъемник. Когда игла останавливается, предполагая, что подъемник не дошел до дна, движение, записанное циферблатом, представляет собой текущий предварительный натяг. Затем используйте гладкую плоскую отвертку без зубцов, чтобы вставить ее между штоком клапана и коромыслом. Используйте конус лезвия, чтобы аккуратно стравить масло из подъемника, что позволяет измерить оставшийся ход плунжера.Когда игла останавливается, общее измерение, записанное циферблатом, будет представлять общий ход подъемника.

Теперь, когда мы знаем, как измерять предварительную нагрузку и ход, давайте обсудим плюсы и минусы различных настроек предварительной нагрузки. По нашему опыту, двигатель LS с алюминиевым блоком, расширяющийся под действием тепла до рабочей температуры, получит зазор клапана от 0,012 до 0,015. Железные блоки получат от 0,008 до 0,010. Это значит, если мы установили податливый толкатель.030 в холодном состоянии, при рабочей температуре у нас останется от 0,015 до 0,018 для припуска на износ. Причина, по которой может потребоваться установка минимального предварительного натяга, такая как эта, может быть в том, что поршень плотно прилегает к клапанному зазору. Допустим, это машина с механической трансмиссией LS3. Мы фрезеровали головки для дополнительного сжатия и рассчитали зазор между поршнем и клапаном на 0,040. Если у нас осталось только 0,018 хода и мы пропустим шестерню и поплавок на клапаны, плунжер сможет уменьшить этот зазор только до.022. Если бы мы использовали настройку максимальной предварительной нагрузки в этом случае, мы бы установили нежелательный контакт. Все это гипотетически, на самом деле «сжатие» подъемника и прогиб клапанного механизма увеличивают зазор еще больше, но мы предпочитаем считать это запасом прочности. Другое потенциальное преимущество состоит в том, что если бы вы поставили клапаны в плавающее положение, это привело бы к менее значительному снижению мощности и более быстрому восстановлению, а не то, чтобы мы когда-либо рекомендовали плавающий клапан.

Теперь давайте рассмотрим настройку максимальной предварительной нагрузки. Как упоминалось ранее, гидравлический подъемник поглощает часть подъемной силы и продолжительность работы в качестве нормальной функции.Допустим, вы хотите, чтобы ваш гидравлический клапан работал больше как твердое тело. Увеличьте давление пружины клапана и установите предварительный натяг ближе к низу. В этом случае при рабочей температуре вы можете проиграть только от 0,012 до 0,015. Главный принцип работы подъемника с коротким ходом — нельзя отказаться от того, чего у вас нет. Это то, что вы могли бы сделать, если бы вы участвовали в гонках, где гидравлические подъемники были правилом класса, и вы искали каждое преимущество, иначе, когда вы столкнетесь с трудностями, связанными с поездкой именно так, вы можете просто пойти с твердым катком. .

Если вы используете кулачок, который не создает плотного прилегания поршня к клапанному зазору, или если у вас есть вторичные поршни с предохранительными клапанами, подъемник не особо заботится о том, где он работает в пределах своего диапазона хода плунжера. Пока у него есть достаточный остаточный ход, чтобы компенсировать расширение, сжатие и небольшой нормальный износ седла клапана, штока, коромысла и толкателя с течением времени, он с радостью выполнит свою работу по поддержанию нулевого зазора.

Заключение

Надеюсь, это поможет смягчить драму с клапаном.Ниже я приведу некоторые рекомендации GPI для быстрого ознакомления. Всего наилучшего и спасибо за вашу поддержку.

С уважением,

Аарон

Краткое руководство

Фиксатор коромысла поворачивается до преднатяга:

  • Болт коромысла LS 8 мм x 1,25 = 20,32 резьбы на дюйм
  • 1 дюйм / 20,32 = 0,0492 перемещения цапфы на оборот фиксатора коромысла
  • .0492 применяется к соответствующей формуле = .078 Предварительный натяг подъемника на оборот для коромысла (1,7)
  • .0492 применяется к соответствующей формуле = .076 предварительный натяг подъемника на оборот для коромысла (1,8)

Ход подъемника:

Рекомендуемый GPI предварительный натяг для большинства кулачков и поршней вторичного рынка с предохранительными клапанами:

  • = мин. 0,050, макс.130 или (от ¾ до 1 ¾ оборота)

Рекомендации для применений, в которых поршень-клапан герметичен:

  • = мин. 0,025, макс. = 0,020 больше минимального зазора PTV. Пример: если измеренное значение PTV составляет 0,030, предварительная нагрузка должна быть от 0,025 до 0,050. (не так критично в приложениях с автоматической трансмиссией, где механическое перегрузка менее вероятна), см. параграфы 7 и 8

шагов для регулировки клапанов с помощью гидравлических подъемников — CarTechBooks

Боб Уилсон

A. Если ваш двигатель еще не был разобран, снимите крышки клапанов.

B. Для вращения двигателя вручную через болт на передней части коленчатого вала вам понадобится отбойный стержень или большая трещотка с 1/2 приводами и головкой. Это намного проще, если вынуть свечи зажигания. Поверните двигатель по часовой стрелке и посмотрите на выпускной клапан на конкретном цилиндре, который вы хотите отрегулировать. Если вы не уверены, какой клапан является выпускным, посмотрите на выпускной коллектор или коллектор, и выпускной клапан совпадет с ним. Когда выпускной клапан начинает открываться, остановитесь и отрегулируйте коромысло впускного клапана этого цилиндра. Это точка вращения распределительного вала, где впускной клапан закрыт, а подъемник находится прямо напротив выступа кулачка.

C. Ослабьте стопорную гайку на коромысле, чтобы снять напряжение с толкателя. Если подъемник залит маслом, подождите минуту или две, пока он не вернется в нейтральное положение. Пружина внутри подъемника подтолкнет седло толкателя к фиксатору, если вы дадите ему на это время.Если вы устанавливаете новые подъемники, которые не заправлены маслом, вам не нужно ждать. Вы можете сразу приступить к настройке.

D. Осторожно поверните пальцами впускной толкатель, одновременно затягивая стопорную гайку коромысла. Когда вы впервые чувствуете легкое сопротивление толкателя, вы только начинаете сжимать пружину внутри подъемника. С этого момента поверните стопорную гайку на пол-одного оборота вниз. Зафиксируйте гайку на месте. Прием теперь отрегулирован правильно.

E. Вручную снова проверните двигатель, наблюдая за впускным клапаном, который вы только что отрегулировали. Он полностью откроется, а затем начнет закрываться. Когда впускной клапан почти закрыт, остановите и отрегулируйте коромысло выпускного клапана на этом конкретном цилиндре. Это место, где выпускной клапан находится на основной окружности кулачка. Отрегулируйте коромысло выхлопа так же, как и впускное отверстие.

F. Оба клапана на этом цилиндре теперь отрегулированы, и вы можете перейти к следующему цилиндру и снова выполнить ту же процедуру.Таким образом, отрегулируйте выпускной клапан, когда впускной клапан закрывается, и отрегулируйте впуск, когда выпускной клапан начинает открываться.

Примечания:

1. При сборке нового двигателя предварительно отрегулируйте все коромысла так, чтобы не было свободного хода в толкателях. При этом поверните двигатель несколько раз, чтобы все толкатели не имели люфта на основной окружности кулачка. Вы не хотите регулировать свободный ход, пока кулачок пытается открыть клапан, соответствующий этому конкретному рычагу.Это даст вам хорошую отправную точку.

2. Многие Форды использовали головки блока цилиндров с нерегулируемыми коромыслами. Это было достигнуто за счет использования шпилек коромысла, на которых был выражен буртик, и гайка была просто закручена на место, или, в случае шестицилиндровых двигателей и больших блоков типа FE, вала коромысла, закрепленного болтом. Это очень просто для стандартные приложения, когда все детали двигателя новые, но не так хороши для восстановления или повышения производительности.Шпильки вдавливаются в головки, а не ввинчиваются, и они легко вытягиваются с помощью кулачков и жестких пружин клапана. Кроме того, если вам нужно фрезеровать головки при их восстановлении, вам также необходимо заменить толкатели, так как требования к длине изменятся, а коромысла не могут регулироваться. Большинство людей, перестраивающих малоблочные автомобили Ford, переоборудуют ввинчивающиеся регулируемые шпильки коромысла. В заводском руководстве по эксплуатации должно быть указано, какой у вас тип.

3. Гидравлические подъемники с клапанами не так суетливы, как сплошные подъемники, и поднять их близко обычно достаточно.Гидравлические подъемники имеют диапазон предварительной нагрузки, который обеспечивает погрешность.

4. Помните, когда выпускной клапан начинает открываться, остановитесь и отрегулируйте коромысло впускного клапана этого цилиндра. Когда впускной клапан почти закрыт, остановите и отрегулируйте коромысло выпускного клапана на этом конкретном цилиндре. Запомнив эту простую процедуру, вы вернетесь в нужное русло.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *